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6. Spectral Methods Using Fourier Series

Fourier series are appropriate to solve problems
with periodic boundary conditions. With<peri0di¢ boundary
conditions, a stable spectral method based on Fourier series
is usually accurate and efficient. On the other hand, when
Fourier series are used to solve non-periodic problems
(including problems having periodic initial conditions
but whose evolution operators violate periodicity),
stability is not enough to ensure conQergence to the true
solution of the problem. An example of the latter effect
was given in Example 1.3. In this section, we investigate
the stability and convergence of spectral methods based on

Fourier series.

Example 6.1l: Constant-coefficient hyperbolic equation with
’ periodic boundary conditions

Consider the one dimensional wave equation

u, + u_=20 (0 < x < 1) (6.1)

3

<

u(x,0) = f(x))

with periodic boundary conditions

u(o0,t) = u(l,t) .



Since collocation, Galerkin and tau methods are identical in
the absence of essential boundary conditions (see Sec. 2),
let us analyze the Fourier—coliocation or pseudospectral
method.

We introduce the collocation points X = n/2N (n=0,...,2N-1)
and the vector notation u = (uO""'uZN-l) where u, = u(xn).

The collocation equations that approximate (6.1) can be written as

-
%%=c DCu, (6.2)

where C and D are 2N x 2N matrices whose entries are

1 .
- - 6.3
Ckz /s exp[-2mi(k N)XZ], ( a)
Dil = =-27i k' 51% ’ (6.3b)

wﬁere k! = k-N (1 <k < 2N-1) and k' =0 if k=0 . A
simple derivation of (6.2) 'is obtained by observing that

cu gives the Fourier coefficients of the collocation projection
Pu of u({x) . Thus, DCu are the Fourier coefficients of

-1

- 5% Pu and, finally,- C DCE gives the collocation projection




of - g% Pu which is - P 5% Pu. The matrix C 1is a unitary

matrix so C* = C-l, and the matrix D is skew-Hermitian so

D* = - D. Therefore, C-lDC'is skew~Hermitian so that

llexpc™1D clt]] 1 (6.4)

This proves that the Fourier-collocation method is stable for
(6.1). The results of this example can be generalized to a
general system of constant coefficient hyperbolic equations.

Example 6.2: Variable-coefficient hyperbolic equation with
periodic boundary conditions

Consider the system of equations

u, + A(x)ux =0 0 < x<1
with periodic boundary conditions u(0,t) = u(l,t) and periodic
inhomogenity : A(x) = A(x+l) for all x . Here u(x) is

a vector of m components and A(x) is an m x m matrix.

rIf we assume that A(x) is a symmetric matrix and that

92 < oaI : (6.5)



for some finite a , then the Fourier-Galerkin method is
stable. To show this, we denote by uN the N-term Fourier-
Galerkin approximation of wu. Using (2.6.7) and integration by

parts, we obtain

1 1 1
4 J[ uw* u dx = w*(a+a") | u.dx <2a uwiu dx
dt N N N x N —_ NN *
0 0 0
Therefore, .
1 1
* 2at . %
“/. uN(x,t)uN(x,t)dx < & ]f uN(x,O)uN(x,O)dx
0 0

which proves stability.
Condition (6.5) is not sufficient to ensure stability for

the collocation method. Consider the scalar equation (m = 1)

u, = r(x)u, 0 <x<1
(6.6)

u(o,+) = u(l,t) .

If we impose the additional restriction that r(x) 1is non-zero
within 0 < x < 1, then we can prove that the collocation method

is stable. To do this, we show that exp(RC*DCt) is stable where

C and D are given by (6.3) and TR is the matrix with entries

R.. =r(x.) &.. .
ij i ij

The matrix R T can be identified with the Liapounov matrix Hg

invoked in (5.7) and, therefore, the method is stable:




R L (RC*DC) + (C*D*CR*) R Y = 0.°

In fact, following the argument leading to (5.11) gives

o

llexp(re ety || 2 < lIR[I|IR | < max |x(x) |/min |z (x) ],

0<x<1- 0<x<1

proving stability for N + = .

If r(x) has a zero within 0<x<1l, collocation with Fourier

series may lead to instability. For example, if N = 2, the

*
eigenvalues of RC DC are 0,0, *v/- where r. = r(x.),
g 0y (r0+r2)(rl+r3) i ( 1)
so there are growing modes if (r0+r2)(rl+r3) < 0. In some cases,
these modes may have large growth rates. One way -
to limit the growth rate of these modes is to rewrite

(6.6) as

u. + % (r(x)u) + % r(x)u, - % u=0 (6.7)

t

Now Fourier-collocation gives the matrix equation

-~ * * >
ut + (C DCR + RC DC - Q)u = 0



_ 1 _, . .
where Qk& =-3r (Xk)6k2 . The first two matrices on the
right side add up to a skew-Hermitian matrix. Also, if (6.5)
holds for r(x) then Q < % aI. Therefore, we obtain the

inequality

Thus, we see it is possible to bound a priori the growth of
modes in the Fourier-collocation method for variable coeffi-
cient problems with periodic boundary conditions.

On the other hand, for problems with non-periodic boundary
conditions, Fourier-spectral methods can produce wrong solutions
even when they are stable. This is illustrated by Example 1.3

which we now study more carefully.

Example 6.3: Hyperbolic equation with non-periodic boundary
conditions

Consider the problem (1.7):

au(gét) + au(gét) =x + t (0 <x<m t>0)
u(x,0) =0 (0 < x < 1)




The solution is

u(xlt) = xt .

If we attempt to solve (6.8) by Fourier sine series using the

Galerkin procedure we Obtain

N
uy = a  sin nx (6.9)
n=1
da N
n 4 Z nm 2 n 4
— - - —_ a_ - =(-1) + — t e (6.10)
dt T =1 nl-p? WM n ™ n
m+n odd
where e, = 0 if n 1is even and e, = 1 if n is odd.

It'is easy to verify that the above approximation is stable.

If we write (6.10) in the form

-
%E—=AN3+E
> - 2 n+l
where a = (al,...,aN), f = (fl,...,fN), fn == [(-1) + 2ten/n],
then A
Ay + Aﬁ =0 .
Thus, Ilexp(ANt)ll =1 for all N and t.

In Figs. 6.1-6.4 we plot the solution of (6.9-10) at
t=1 for N = 25, 50, 75, 100 .- It is apparent that uN(x,l)
does not converge to the exact solution xt at t =1 as

N + « ., Instead, Uy for N even appears to be converging as



, [

|
\z’“ZS(x'l) I %

»n
=

Fig. 6.1. A plot of uN(x,t) vs x for N=25 and t=1 where uy(x,t)
is determined by numerical integration of (6.9-10) with negligible time-
differencing errors. A plot of the exact solution xt at t=1 to (6.8)
is also given. Observe the apparent divergence of uyg(x,t) from the exact
solution for 0<x<t and the enhanced Gibbs phenomenon at x=0,T.




B Fig. 6.2. Same as Fig. 6.1 except N=50, t=l.




Fig. 6.3. Same as Fig. 6.1. except N=75, t=1l.

\/\/.f“n(x'l)

S e U I
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N - « to the function

Xt X > t

u = (6.11)
even m{x—-t)+xt x < t,

for t <, while Uy for N odd appears to converge to

the function

Xt x>t

u = (6.12)
odd T(t-x)+xt X < t

for t <™ . The results plotted in Fig. 6.5 for (x,t=2)

Y100
are also consistent with convergence to the wrong solution
(6.11); Notice that the approximations uN(x,t) plotted in
Figs. 6.1-5 all exhibit a large region of nonuhiform con-
vergence near X = 0 and x =7 and that the rate of convergence
to the wrong solutions (6.11-12) in the interior of the interval
O0<x<m  is roughly like 1/v/N.

The origin of the divergence of (6.9-10) from the exact
solution to. (6.8) is not instability; rather, the divergence is

due to inconsistency. Since |lexp(Agt)|| =1, the method is

stable. To show that it is not consistent we estimate the

truncation error in the L2 norm,

-12-




™

Fig. 6.5. ©Same as Fig. 6.1 except N=100, t=2. Observe that the region
of apparent divergence is still 0<x<t.

13-




EN = ||Lu -':LNUIII

for u = xt where LN = PNLPN and PN is the Galerkin

projection operator and L = - 3/3x . This error can be

bounded from below by

-

eg = lLu-P Lu+ PyLu - Py LPull

> llpyL(z-pg)ull - [[(i-py) Tal|

However, H(I-PN)LuII -0 (like 1/YN) as N > » because

this norm is just the error in tke Fourier sine series ex-

pansion of Lu = - g% xt = t . Therefore, if we can show

that HPNL(I-PN)uII does not approach zero as N + o

then (6.9-10) is not consistent.
To estimate HPNL(I—PN)uI] we proceed as follows.

Since

-14-




we obtain

where

Therefore,

an(t)

(I—PN)u

-]

n=N+1

N

P\ L (I-PN)u = b_(t) sin nx

bn(t) =_Tl'

n+l

2
IIPNL(I—PN)ul[ = ] b

N 64t

2

T

2

2(-1) t/n ,

4

-]

m=N+1

n=1

m+n odd ®

N
A
n=1

m+n odd

N

)

n=1

[--]

m=N+lvn2-m

©

)

N

n=1

nm

2

-m

2

n

n

2

( n
m=N+1 m2

m+n odd

15~

7

)

2

am(t) .

since the Fourier coefficients of

! a (t) sin nx

u

are given

by




for suitable constants C and Cl' This completes the proof
that ||Lu - LNu|| does not approach zero as N + =,

Blair Swartz (private communication, 1976) traces the
inconsistency of (6.9-10) to the incompleteness of the set
of functions {L(sinnx) = - ncosn x, n=1,2,...}. This set of
functions is made complete by augmenting Vit by the function 1.
Whereas u may be well approximated by a function u of

N
the form (6.9), Lu may not be well approximated by the

function Lu .. In fact, if | lou - LuN||+O as N » o ,
then

m

[ (Lu - 1Lu) dx -~ 0 (Now),

N

0
Since

Ll m

/ Lug = - f ) na cosnx dx =0,

0 0
Lu may be well approximated by LuN only if

T R
¢ = g Lu dx = u(0) - u(mw),

which is generally not true.
As shown in Figs. 6.1-5, uy (x,t) does not coverge to xt
as N + «. The analysis given above provides no clue to the

fascinating way in which the method achieves this divergence.

There is no indication of the ‘error' wave (—l)Nﬂ(x-t) that
appears in (6.11-12) and propagates with speed 1 across
0 <x<m1m. It seems that the complete mathematical analysis

of the divergence of (6.9-10) is difficult and we do not now

-16-




have a justifiable argument to demonstrate convergence of Uy

i .11-12 N through
to Uoven and u_44 9iven by (6.11-12) as + ® g
even and odd values, respectively.

In the next example we will show that it is not simply
the presence of boundary conditions but rather the non-periodic

nature of the problem that causes the divergence of the

Fourier-spectral methods.

Example 6.4 Non-periodic boundary-free problem

Consider the problem

g%} + (:<—%§) -%g% =0 (0 < x < )
(6.13)
u({x,0) = f(x)

The problem is well posed without specifying any boundary con-
dition. However ;- it is clear that the exact solution given by

ulx,t) = £(5 + (x-Pe 5) (6.14)

is not periodic-in x . Since r(x) = x - % has

é bounded derivative, it follows from Example

6.2 that Fourier-Galerkin approximation to (6.13) is stable.
Nevertheless it is not convergent as shown by the results
plotted in FPigs. 6.6-8 for £(x) = sinx and N =5, 10, and

20 retained terms in the Fourier sine series.

-17-



Fig. 6.6. A plot of u(x,t)
t=0.5. Here

u(x,t) is the exact sd

and v _(x,t) wvs x for NN=5,

dlution of (6.13) and uy(x,t)
is the Galerkin approximation to this solution using an
Fourier sine series expansion.
from u(x,t).

of un(x,t)

N term
Observe the apparent divergence

-18-
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N Fig. 6.8. Same as Fig. 6.6. except N=20, t=.5.
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" Polynomial Subtractions for Non-Periodic Problems

There is a method that can be used to ensure that Fourier
series yield convergent results for non-periodic problems.
The idea is to express the solution as the sum of a low-order
polynomial and a Fourier series; the polynomial is chosen so
that the Fourier series converges rapidly as suggested originally
by Lanczos (1956,1966) . The method has been used by Orszag
(1971c) and Wengle & Seinfeld (1977) to solve problems with
non~-periodic boundary conditions. We illustrate it here

for the problem discussed in Example 6.4.

Example 6.5 Polynomial subtractions applied to Fourier series

' The Fourier sine series expansion of the exact solution
u(x,t) to (6.13) converges slowly because, in general,
u(0,t) # 0 and u(ﬂ;t) 0 . This slow convergence of
the Fourier series of £he exact solution implies that Galerkin
approximation is inconsistent, as shown using the methods
of Example .6.3. 1In order to avoid slow convergence or even
divergence, we proceed as follows.

We seek tﬁe solution to (6.13) as the sum of a linear

polynomial and a Fourier series:

u(x,t) = b(t)x + c(t)(mr=-x) + J] a_(t)sin nx (6.15)
n=1 ©°

where b(t) and c(t) are chosen to ensure that an(t) - 0

rapidly as n + « . Substituting (6.15) into (6.13) gives

=21=



b'(t)x + c¢'(t) (m=-x) + ngl ag(t)sinru<= (%—x)[b(t)— c(t)]

©

+ ] a"\(t)sinnx '
L2 (6.16)

where

2 — T 2nm 1
an(t) = Zl 75 2, + 5 a, (6.17)
= -m
n+m even
n#m

are the Fourier sine coefficients of ( % - X) g% z an sinnx .

;f we -knew u(0,t) and u(m,t) we couid set b(t)=u(m,t)/m and
c(t)=u(0,t)/ﬁ; w;th this choice, the Fourier ;ine sefiestin
(6.15) does‘not exhibit the Gibbs phenomenon and an(t)=0(l/n3)

as n+». However, the boundary conditions on u are not known
as part of the specifications of the problem (6.13). Therefore,
we must solve for b(t) and c(t) directly from the differential
equétion.

Equating coefficients of sinnx in (6.16) gives

' 2 + ~
g8 = [c'-b'+c—.b]ﬁ(-l)n 1 + [b—c—2c']% e, + a (n=1,...) (6.18)

where e, = l1 if n is odd, 0 if n is even; here we use the

Fourier sine series expansion of 1 and x:

=29~




x=2 7§ (—l)n+l sin nx

n=1 n

Also, if b(t) and c(t) are chosen so that an=0(l/n3)

as n»o, then the Fourier series Zan sinnx may be differentiated

termwise so

= -] ~ ®
. T 3 . T ©
1 a_ sinnx= (5-x)2- a_ sinnx= (3-Xx
n=1 =2 2 ax nzl n 5 = X) £1 na_ cos nx .
Therefore,
lim Z a_ sinnx =3 J na_,
@© A - @ n
lim J a_ sinnx =-3 ] (-1)" n a_.
x+q- n=1 o 2 =z n

Using these results and setting x =t and x =0 in

{6.16)
gives, respectively,
o
B _Len -3 nz_l (-1)™ na_ (6.19)
o
%% = % (b-c)v+ % nzl na_ . (6.20)

-23—



Galerkin approximation reproduces the equations (6.18-20) with

an = 0 for n = N+l1, N+2, ... |

The above derivation suggests, but does not prove, that
an(t) + 0 sufficiently rapidly as n - « so that inconsistency
problems are avoided. The exact solution of (6.13), which
satisfies (6.18-20) with N = =, does satisfy a_ = 0(1/n)
as n»o ., However, the Galerkin approximation with finite N
does not yield such a rapidly converging result. In fact,

estimates like those given in Example 6.3 show that

1
lLv - L vl = 0(—=5) (N » ) (6.21)
N N3/2

where v satisfies v{0,t) = v(w,t) = 0 and L = (%-—x)gar.

Since the Galerkin approximation (6.18) is stable (see Example
6.6),H;;m;;pect that the errors in the Galerkin approximation
(6.18-20) are of order N /2 for fixed t.

The above prediction has been tested numerically. 1In
Table 6.1 we list for various N the maximum errors in the
approximation obtained by solving (6.18-20). A plot of the
e?ror uN(x,t) - u(x,t) vs x for N = 30, 40 at t = .5 1is
given in Fig.. 6.9 = 10 .

In the next example, we prove that the method of

polynomial subtraction used in Example 6.5 is stable.

Example 6.6. Proof of stability for polynomial subtractions -

It is not obvious that the approximation (6.18-20) is
stable. Fourier series approximation without polynomial subtractions

are stable but not consistent (see Example 6.4). On the other hand,

24—




Table 6.1

N €= maxluN(x,t=.5) - ulx, t =.5)]| NB/ZEN

5 4.19 (-3) ' 4.7 (-2)
10 2,13 (-3) 6.7 (-2)
15 | 1.13 (-3) 6.6 (~2)
20 . 8.28 (-4) 7.4 (=2)
25 5.76 (-4) 7.2 (-2)
30 - 4,70 (-4) 7.7 (=2)
35 3.64 (-4) 7.5 (-2)
40 3.13 (-4) | 7.9 (~2)

Table 6.1. Errors in the polynomial-subtracted Fourier
series épprcximation uN(x,t) given by (6.22) and
(6.18-2d) for the problem (6.13) with £f(x) = sinx

for t=.5. Observe that tﬁe errors appear to decrease as

N_3/2 as N » « in agreement with the estimate (6.21).

-25—
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-4 )
. 5x10 — Fig. 6.10. Same as Fig. 6.9. except N=40, t=.5.

u40(x, .5) - u(x,.5)ﬂ {\

.

0 I I 1/\1/\/\ ! qr\\ JaY |
f\\/\vﬁ\/\v \/\/\V T | s /v/\ AL UW\

-5x10"% |
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the approximations obtained by polynomial subtractions are consistent
as shown by (6.21), but their stability remains to be shown.
To demonstrate stability of (6.18-20), we reformulate

these equations in terms of uN(x,t) defined by

u, (x,t) = b(t)x + c(t) (m-x) + J a_(t) sinnx. (6.22)
N n=1 D

In terms of uN(x,t), (6.18) is equivalent to

T BuN Ju
- IT__ ._.N 1 = =
é o + (x 2) " sin nx dx 0 (n l,...Nb (6.23)
while (6.19-20) Dbecome, respectively,
BUN 3uN
Tr =
-Tt-+ (x 7) W Or (6.24)
X =7
au 9
N ™ YN -
T L = 0 (6.25)
x=0

Multiplying (6.23) by nzan; suming from n =1 to n = N, and
noting that
3"y

N
> = - ) n° a sinnx,
3x n=

-28-




we obtain

= 0. (6.26)

O
Q
o
o
@
o

Integrating (6.26) once by parts and using (6.24-25), we obtain

Ju 3 a4
_3_ __I\.]. + (x - IT_) uN
ax

N -
ST 5 dx = 0.

ox ax

O

Therefore,
au 2 m f3u 2 T ju 2
3 _ N T, 2 N\
'a'Efo( ) dx = Zg(ax> dx - [ (x=3) ssz(sx/ ax

Integrating the second integral on the right once by parts gives
3 fw A P 7 A T I e du, ) 2
ot 0 8x 0 X 2 X

9X
so that

X=T x=0

—.3

3 fr (BuN\ 2

( duy
7 | \7x) \T‘ dx.

Thus, we obtain the stability estimate

T du (x,t) 2 - U du _(x,0) 2
i ax < et f | A ax , (6.27)

-29-



The bound (6.27) shows the stability of (6.18-20).

Examples 6.5-6 suggest that by subtracting polynomials of
higher and higher degree from wu(x,t), the residual Fourier
series can be made to converge faster and faster. Subtracting

a linear polynomial as in (6.15) gives Fourier approximations

-3/2

with errors of order N as N»»= ; subtracting a quadratic

polynomial gives Fourier approximations with errors of order
N-7/2; and so on. In the. limit we disperse entirely with
Fourier series and obtain a rapidly converging polynomial
approximation. The convergence theory of these polynomial

spectral approximations is discussed in the next two sections.

-30-




7. Applications of Algebraic-Stability Analysis

The main result of Sec. 5 does not provide us with a
systematic way of constructing the family HN of Liapounov
matrices necessary to prove algebraic stability. In general,
these matrices are difficult to find. However, there are
several problems for which they can be found directly from
the differential equation. |

It is very easy to construct Liapounov matrices for Galer-

kin approximations to

a>
]

Lu

@
ot

when L is a semi-bounded operator on- the Hilbert space #%;.

. We say that L is semi-bounded if

L+L < ol (7.1)

for some constant o s Where L* is the .adjoint of L defined
with respect to the Hilbert space inner product ( , ). If L

is semi-bounded

£ < alu,u) , (7.2)

SO

(u(t),ult)) < e*F(u(o),u(o)

. =31-



and the 'energy' (u(t),u(t)) grows at most exponentially with
t L ]
If an energy estimate of the form (7.2) exists, then Galerkin

approximation based on the Hilbert space inner product (e, ) 1is

stable (and, hence, algebraically stable). The LiapounovVv

matrix Hy may be chosen to be the N x N identity matrix

Iy. It follows from the Galerkin equations (2.6-7) with

f =0 that

a _ *
g (uyruy) = (ug (LA Tuy) < a(ug,uy)
Thus,

(g (£) g (£)) S e (uy (0) ,uy ()

Since wug(t) = exp(Lyt)uy(0) for all wuy(0), ye obtain

Hexp(LNt)H X exp($at) so stability is proved. oThe reader is

reminded that with stability established, the theory of Sects.

4 and 5 proves convergence for consistent schemes.

Example 7.1: Semi-bounded Galerkin approximations

The above construction establishes stability and thus con-
vergence for a wide variety of Galerkin approximations. Among

these stable Galerkin approximations are:

(i) Solution of any problem u, = Lu that is semi-bounced

in L, (-1,1) Dby means of Legendre series. For example,

u, +u, = £f(x,t) with u(-1,t) = 0 is stable (and convergent)

-32-




when solved by Legendre-Galerkin approximation. For our argument

to be complete it is necessary to verify that the Legendre-
Galerkin approximation to this problem is consistent. Thisg is
done as follows.

We write

HLu—PNLpNuli < | (x-p Luf| + HPNL(I-PN)uH .

The first term on the right goes to zero as N+« at a rate
governed solely by the smoothness of Lu ; it measures the
error in the N term Legendre-Galerkin expansion of Lu .
The second term is estimated as follows. Set

o

L(I-Pg)u = n£1 a ¢ (x)

where {¢ } are normalized Legendre polynomials. If L is
a finite?order differential operator so L* is also a finite-
order differential operator (for example, L*=3/0x:if L=-3/%x),

then

¥
. = (L ¢ (7-p Mu)
Thus,

*
lagl < s |1 |1 (@-ppul]
= O(nA/NB) (nbo ; Now ),
where A depends only on L (A = 3/2 if L = -3/3x and ¢, is a
normalized Legendre polynomial) and B depends only on the

smoothness of u (B is arbitrary if u is infinitely differentiable).

Thus,
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2

2 2
lIpL(I-p)u||” = a, >0

il o~

n=1

faster than any power of 1/N as N> if u and all its
. . . .
derivatives are smooth. This proves consistency. This klnd cf

proof extends to a wide variety of the examples to be discussed

in Sects. 7 and 8, but will not be repeaged.

(ii) Solution of ut‘= Xu, with the boundary conditions

u(xl,t) = 0 is a well posed problem in the Chebyshev inner

product
1
(u,v) = [ BRIV g
-1 (l-xz)%

In fact, if L = x 3/3x , u is differentiable, and

u(xl) = 0 then, by integration by'parts,.

-~

1 .3 _
(u,Lu) = fl x(l-xz)-é”u u dx = - ) (1-x2) 2u? ax <

-1 -1

0 L4

Thus, Galerkin approximation to the problem is stable using

Chebyshev polynomials.

(iid) Solution of u +u, =0 (0 < x < @) with
u(0,t) = 0 1is a well posed problem in the Laguerre inner

product




o«

[ u(x)vix)e Xax .
0

(u,v)

In fact, if u(0,t)

]

0 then, by integrating by parts,

- - @« -
- f uuxe xdx = - % e xu2 l - f e xuzdx <0 .
0 o ¢
Similarly, the problem U =u (0 < x < o) with u(0,t) =0
is also stable in the Laguerre norm.
(iv) Solution of u, = -xu, (== ¢« ¥ < ®») is well
posed in the Hermite inner product
. X
(u,v) = [ ux)vix)e =~ dx .
. -0
In fact,
9 e -X
so that integration by parts gives
3 R g 2 2
sgluw) = [ ue ™ (1-2x%)dx < (u,u),
-C0
. - 1.2
where we assume that u << x ° exp (3 x°) as [x] » = .
(v) The heat eguation u, =u,. with u(xl,t) = 0 is semi-

bounded in the Chebyshev norm. In fact, if u is differentiable

for |x| <1 then



1 23 273 1 1 2
J (1-x%) " wu, dx = (1-x7) ° uu | -J [u(l-x“)
-1 -1 -1
The first term vanishes because u 1is a polynomial in
therefore u(xl) =0 implies
_u__ = 0
5 1/2
(1=x7) x =zl
The integral term on the right is
- %
1 2
-f fm(1-x“) ] u, ax
-1 X X
-1 -1 1
1 2 2 2
= -J [w(l-x3)  J_ra(l-x?)  ].(1-x?)  ax
-1 X b'e
1 1
- — 2 -
1 2 2
+ %-J 2 [u(l-xz) ] x(1-x%)  dx
-1 9%
» -1 L
1 5 2 2 2
- -J @(1-x%) .| (1-x%  ax
-1 X
-3 -2
2 1 1 2
+ %-uzx(l—xz) l —%—f u2(l-x2) dx
-1 -1
< 0
and therefore
1 2
g% J 4 dx < 0 .
-1 V142
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In the next three examples we generalize the proofs of stability

and convergence for Galerkin approximations given in Example

7.1 to show the stability and convergence of tau approximations.

Example 7.2: A semi-bounded tau approximation

Consider the equation

su _ , 3u
ot X

with the boundary conditions

S u(*l,t) = 0,

,: It was shown in Example 7.1(ii) that if L= x3/9x, then

L+L*<0

~in the Chebyshev inner product. If we seek the solution as the

~ truncated Chebyshev series

by the tau method, then Uy satisfies exactly the equation

9 9 -
_SE. - X N = TN(X)TN(x) + tN_l(t)TN_l(X) (7.4)
ot X

Equating coefficients of x and x" ' on both sides of

(7.4), we obtain
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since T, = n-in nzn_.?’xn—2 + +++« . Therefore,

2 1 .
T (uN'Tc—)" = ([L+L*Jug,uy) + [ag=Nagjayg
tolagap - N-Day jlag (7.5)
so that

d 12, L_.2__2 1 _ 2 _ _ 2 <
é~§E[%(uN,uN;vaN aN_l]=ﬁi[L+ﬂ]uN,uN) NaN (N l)aN-l 0.

_Since

with -¢o=2, Cn=l(nil), the above inequality is equivalent to

<
T cnan- 0 - (7.6)

This proves stability: ay and ay_; are bounded because they

are determined in terms of ag. al,...,aN_2 by the boundary

conditions u(xl,t) = 0.

For this example, we can prove stability directly from the

matrix representation of LN' In fact,
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1 N-4
1 =3 :
(L) s =g [K8: +2 )7 k6. 1(0<5<N, 0<k<N (7.72)
N’ jk 5173k P .J+g,k(_3_, <k<N),
L even
In the tau approximation, the boundary conditions u(+l,t) = 0 require

that the last two rows of the matrix LN be replaced by

= -1k, (7.7b)

(L) = 1. ' (7.7¢)

If the boundary conditions (7.7b,c) are mot applied then
the spectral approximation. is unstable: without the boundary conditions

. . . _ N
Ly has the eigenvalue N |[with the eigenvector aN—Zk—(k)’

'aN-2k—l = 0] so that

To prove convergence when the boundary conditions (7.7b,c) are
applied, let us first consider an odd solution in which a = 0

if n is even. If we assume that N = 2M+1l and set

dy = 32k+1 (0 €k <M

then the system reduces to

=D d

ol
)

where
M-3

L

D.kf—(2k+1)6jk+ 22_

) - i <k<
5 (2k+1)6j+ 2N (0<j<M, 0<k<M)

0 K

If we introduce the M x M transformation matrix S defined by

sjk = 3§ ik T &j+1,k (0<3<M, O<k<y )
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then S(D+D*)S* is a diagonal matrix with entries
(-4, -4, ..., -4, -4N - 12). Thus, we obtain D + D* < 0,
so that 3(d,d)/dt<0 which proves stability.

Example 7.3. Stability of tau methods applied to degree-reducing

semi-bounded equations

An argument similar to that given in Example 7.2 demonstrates
stability of tau methods in terms of arbitrary orthonormal polynomial

%% = Lu where L is semi-bounded and degree

- bases for equations
reducing: L is said to be degree reducing if for any polynomial

PN of degree N, LP is a polynomial of degree at most N - k

N
where k 1is the number of boundary conditions that are applied.
If L is degree reducing, equating coefficients of xN_k+2,...,xN
in '
BuN N
——=LU+Z T ¢
N
ot n=N-k+1 ° 7
impliés that Tn(t)= aﬁ(t) for n = N-k+l1,...,N; here
b ()
u (x,t) = a_ ()¢ _(x
N n=0 n n

and the orthonormal expansion polynomial <bn(x) is assumed of degree n.

Therefore,
] N ) <
— - ] - <
3 S lugiuy) I ara, = ([L+L*Juyg,uy 0
n=N- k
so that
N-k
9 2 <
3_t z an - 0.
n=0
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which proves stability since Ag_gel’ccc '3y are determined by

the boundary conditions in terms of aj,ajs...,8y -

sxample 7.3: More stable tau approximations

(1) Suppose that

0 (-1 < x<1, t>0)

=}
+
[+

[l

it
o

u(-1,t)

is solved by tau approximation using Legendre polynomials.

The Nth degree Legendre-tau approximation w satisfies

3 ] i -
3¢ N Y 3x Uy T AN ¢ Uy l-l,t) = 0.

1
Since / Pé(x)dx = 2/(2N+1) [see A.25], we obtain
—l‘

1

d 2 2 2
&'[_{ U - o ! 2 0,
which proves stability.
(ii) Suppose that
Ye T Uex
u(xl,t) =0

is solved by the tau method using Chebyshev polynomials. Since

: *
L = ‘17 is degree-reducing and L+L 20 [see Example

9x
7.1(v)], the method is stable.

(iii) The solution of
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u, + u_ =0 (0 < x <=, £ >0)

u(0,t)

sint (t > 0) (7.8)

u(x,0)

Il
o

(0 < x < =)

by Laguerre polynomials is stable using the tau method since,
by Example 7.1 (iii), L 1is semi-bounded. The equations of
the Laguerre-tau approximation to (7.8) are a simple modification
of (2.23-24). 1In Fig. 7.1 we compare this tau approximation
with the exact solution of (7.8) at t = 30 for a 20-term
Laguerre expansion. The reader should compare this approximate
result obtained by the tau method with the best Laguerre approxi-
mation to sin x plotted in Fig. 3.12.

In the next example we discuss some ways to find non-trivial

Liapounov matrices {HN} when L 1is not semi-bounced.

Example 7.5: . _Polvnomial approximations to a variahle coefficient

hyperbolic equation

Consider the initial-value problem

u, = -Xu x| < 1

u(x,0) = g(x) (7.9)

which is well posed without requiring any boundary conditions.

The exact solution to this problem is

u(x,t) = g(xe 5




(x-0€)utrs

"21°g 314 ur pojlord (og‘x)n 03 uorjrewrxoxdde

axxeangde] 31seq 9yl 03 uorlewrxoadde neil-saasnde] oyl JO AITIBITWIS

=u
8yl 92AI8SqQ) ‘3 UIS = Ye ON Aq peoerdsax ($Z°'Z) pPue 0= YIIm

N
(€2°2) Aq uoarl3 aae suorienbs nejl oyl pue (QZ=N 1B p8lBOUNI]
ST (gg'g) uorsuedxo oaxaonde] oyl 2I9H °‘0Z2=N ‘0g£=1 Jo0J woaiqoxd
STY3l 02 uOoTlInios 308Xd 9yl jo 307d ® pue (g8',) worqoad ayjy o3l

Ap.xvzs uor3lBwixoxdde nejl-sxxsndeT ayl jo jord v °1°2 "3814
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so that u(x,t) approaches a constant as tow:

u(x,t) ~g(0) (tr», |x|<1).
The problem is well-posed in the sense that ||exp(Lt)]|]
is finite for finite t, where L= - x3/3dx and [1+]] is
the usual L, norm. However, [lexp (Lt)]]|= exp (% t) so
| |lexp(Lt) || is unbounded as t+®», To show this, we observe that
the function that extremizes [ fu(e) | ] subject to  ||u(0)]|]=1
satisfies u(x,0) = gt(x) where
+ et/2 lxlie—t
g (x) = & _t
0 | x|>e

The operator L is semibounded in the usual L

5 horm:

1l 1 2 -1
] 2 au” 2 2 2
— u dx = - X 77— dx = - u" (1) - u“(-1) + u- dx
3t Il £l 3 X Il.

1
< f»uzidx,
- =1

so L + L* < I. Therefore, Galerkin polynomial solution of

(7.9) 1is stable and convergent. The Legendre polynomial approx-

imation uN(x,t) satisfies

W-}' XW = 0 (7.10)




exactly because no boundary conditions are applied and L 1is
degree preserving. Therefore, Galerkin, tau, and collocation
approximations to (7.9) are identical and all three methods
are stable.

In fact, all polynomial-spectral methods applied to
(7.9) satisfy (7.10); all polynomial methods for this problem
give identical results and, therefore, they are all stable in
the usual L2 norm. In terms of the natural norms for a general
polynomial basis {wn}, i.e. that norm in which (wi,wj) =6ij,
the spectral approximation (7.10) is algebraically stable if

the N X N matrix whose elements are

(HN)jk = wj(x) vy (x) dx

has a condition number which is bounded algebraically, i.e.,

-1
NE: TNy B

‘As an example of the complicated behavior of spectral

= 0 (N7) (N->=) .,

approximations for this problem in norms different from the usual
L2 norm, let us consider the Chebyshev-L2 norm. It may easily
be shown that L + L* is not semibounded in the Chebyshev inner

product. For example, consider the trial function



satisfies

([L+L*]v,v) = - (xv,,Vv) = (V,xV))
T +T
2N+1 “2N-1
= —<-—2N[T2N_l+...+Tl],Tl - 5 >
= %N(v,v) .

Nevertheless, Chebyshev approximation to this problem is
algebraically stable. We will demonstrate this fact explicitly

by construction of a Liapounov matrix.

.

A Liapounov matrix for the Chebyshev approximation to (7.9)

may be found by direct examination of the evolution equation for

. -> .
the vector a.N = (ao,...,aN).
aan N
«a—'t—-=—'nan-zz pap (n=0,...,N). (7.11)
p=n+2
p+n even
Since a, decouples from S RRRRRL in (7.11),w¢ can restrict

attention to dyr---.r8y. Suppose we define the matrix Hy by

(Hy) =-§.-6. : (1 < j,k < M,

Hy is the Liapounov matrix for Lg : in fact, (5.7b) 1is satisfied

because
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0 -1 0 -1 0
l-(HLT+LH)=» -1 0 -1 0 1
2NN NN - .
0 -1 0 -1 0

LI I )
LI
LRI Y
LRI S
s e 0

.

The matrix displayed above has rank 2 and the nonzero eigenvalues

are -[N/2], -[(N+1)/2]. Therefore, by the theory of Sec. 5,

L.t
e ™I <\limgll izt = vF

where |[[-|| is now the Chebyshev norm. Thus, Lg is
- *
algebraically stable in the Chebyshev norm even though LN-FLN

is unbounded in this norm.

The qualitative behavior of the Chebyshev norm of exp (L t)

as a function of N and t is as follows. For fixed t and N-w,

Ilexp(LNt)|| =0 (Nl/4); this result is justified heuristically
by following the argument giveh in Sec. 5 that 1led to (5.4).
On the other hand if t > &nN, ]]exp(LNt)]] = O(Nl/z) as N- o,
A heuristic justification of this result is as follows. Let

u(x,0) =1 for |x[<e, 0 for |x|>e. Then the exact solution

of (7.9) for t>&n 1/ is u(x,t) ~ 1 for Ix]<1, so Hu(x,t)]]2 N

as €0t for t>2n l/¢. As in Sec. 5, we conclude that

[[exp(LNt)|[= 0 (Nl/z) for t>¢nN as Nsw. [Even in the usual
L, norm, [lexp(LNt) ll=10 (Nl/z) when t > ¢nN, which mimics the
unbounded growth of || exp(Lt)]| as t e .]
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8. Constant Coefficient Hyperbolic Equations

In this Section, we discuss the stability of spectral methods

for the problem

u , du_ g (Ix] <1, t>0) (8.1)

with the initial condition

u({x,0) = £(x) (lzx] <D (8.2)

and the boundary condition
u(-1l,t) =0 (t > 0) . (8.3)

The results for this problem can:.be extended to a general

hyperbolic system of the form . - e
u, = Aux

with characteristic boundary conditions, because for any hyperbolic

system A can be diagonalized by a real similarity tranformation.

The operator L = - %; is semi-bounded in the usual
Ez(-l,l) norm when operating on the subspace of functions v that
satisfy the boundary condition v(-1,t) = 0. In fact
5 1 5
(v, [L+L*)v) = -2f v ¥ ax = -v2(1) £ 0
-1 9X
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and therefore Galerkin and tau methods are stable using
Legendre polynomials.
However, L is not semi-bounded in the Chebyshev norm. To

show this, we set

v(x) = T, (x) = T, (x) - 2T, (x)
so that v(-1) = 0 . Since , ' -
Ton = NITon*Ton-3t - +T
we find
(V,[L+L*]V)—= -2 fl(l-xz{-% %% v dx

-1

on-1TTon-3t- T 'TO](TQN—Tl-ZTo)dX

= -2 [ (1-x°) 2[2N(T
-1

22 v . (8.4)

The fact that L+L* 1is not semi-bounded is consistent with the fact
that exp(Lt) is not a bounded operator for t<2 in the Chebyshev
norm (see Sec. 5). However, these results do not prove that
Chebyshev-spectral approximation .to (8.1-3) is not convergent.

In fact, we shall show that, while Chebyshev-spectral approximation

to (8.1-3) is not stable in the Chebyshev L, norm, it is algebraically

stable in this norm.
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In order to investigate algebraic stability, we must study more
carefully the behavior of the Chebyshev coefficients of the

approximate solution

uy = I a (BT (x) .

The differential equations for the an's are given by (2.11)

for Galerkin approximation, (2.19) for the tau method, and

(2.32) for the collocation method. As remarked in Sec. 2, .all

these equations may be written in the vector form

(P

N

-
where a = (aO’al""aNfl) and Ly is an N x N matrix. The

val i i :
ue of aN(t) is determined in terms of a(t) by the boundary

condition (8.3).

Numerical Evidence for Algebraic Stability

Let us first examine the behavior of LN + LN*. In Table 8.1

we list the largest eigenvaiue of LN + LN* for N= 10,20,...,100

for the three Chebyshev methods. This table indicates that the
largest positive eigenvalue of LN + LN* grows like ch for some
constant ¢ . If I‘N were a normal matrix this would imply

that ||eLNtH behaves like exp(% cNZt). However, the matrices

LN are not normal and therefore the large eigenvalues of Ly * LN*

do not imply instability.

-50-




Table 8.1

N % Collocation E Tau ’ Galerkin
10 ‘ 68.8413 i 21.4089 72.8947
20 287.6920 g 84.8970 296.3027
30 656.4818 % 190.4908 669.6434
40 1175.2124 % 338.1769 1192.9231
50 1843.8839 % ~ 527.9525 1866.1433
60 2662.4966 759.8167 2689.3042

170 3631.0503 1033.7690 3662.4061
80 4749.5453 1349.8093 4785.4489
90 6017.9812 1707.9375 6058.4329

%00 7436.3584 2108.1534 7481.3579

Table 8.1. The largest positive eigenvalue ) of L

k 3
max N + LN
for the Chebyshev-spectral solution of the one-dimensional wave

equation (8.1-3). The Galerkin approximation to this problem is

given by the solution to (2.11), the tau approximation is given

by (2.19), and the collocation approximation is given by (2.32).
Observe that Amax n ch as
Galerkin and collocation methods and

method.

N > = where c = 0.75

c = 0.21

for the
for the tau
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In Table 8.2, we give the norms of the matrices

*
exp[LN] . exp{LN ] for the three projection methods (Galerkin,

collocation, and tau). The results indicate that‘llexp(LN)[| grows

only like Nl/4 as N—»» (as argued heuristically in Sec.5). In other

words , LN is algebraically stable (at least for t=1). This result
shows the extreme pessimism of the energy estimate llexp(LNHI =
O(exp(%-ch)); crude energy methods may be very misleading for non-
normal evolution operators.

In order to understand better how the Chebyshev spectral
methods avoid an energy 'catastrophe' [energy growth like eXp(CN2t5]

we have solved the tau equations (2.19) numerically with a very

'bad' initial condition:

g (x,0) = [T (x) + 27 1 (x) + (-DY T (x)1/ V7T . (8.5)

For the' tau method, this initial condition satisfies

—a(ﬁ" )| =(u, (L.4L.*)u.) = 0(N%) (N » =)

3t ‘Un'Uy N’ CENTEN Yy .
=0

In Figs. 8.1-2 we plot tie energy (ug,w) vs t for N =25
and N

50. It is apparent that the initial slope of the energy

growth is of order N2 but that the energy does nct maintain this
rapid rate of growth. Observe that the region of rapid growth

is closer to t =0 for N = 50 than for N = 25. The behavior

observed in Figs. 8.1-2 is not inconsistent with the fact that

t = 3 ' ) J * \
uN( 0) 1is a 'bad' eigenmode of LN + LN . Because LN is
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Table 8.2

| X .| Collocation - Tau. . Galerkin
10 2.0707 | 2.0003 2.5788
2Q 2.7932 2.8119 : 3.1903
30 3.4620 3.4857 g 3.8328
40 4.0324 4,0514 | 4.4078
50 4.5222 . 4.5339 4.8630
60 4.9117 4.9855 5.2057
70 5.2961 5.4002 5.5262
80 5.6586 5.7770 5.8689
90 - 6.0282 6.1401 6.2526
00 6.3818 6.4831 6.6257

Table 8.2. The largest eigenvalue x of exp(LN)exp(L;).
Observe that A .. behaves as ch/2 as N+ = whére

¢ £ 0.6 for all three spectral methods. The

largest eigenvalue of exp (LN) exp (L;) grows only like
Nl/2 despite the existence of eigenvalues of LN + Lﬁ
growing like N2 (see Table 8.1).
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non-normal the 'bad' initial condition is not an eigenmode of
Lﬁ so that after evolution from 0 to t exp(LNt), uy 'rotates'

out of the region of bad modes of LN + LN*.

The direct computation of exp[LNt] for t=1 is not enough to
verify algebraic stability because the theory of Sec. 5 shows
that we must study the behavior of exp[LNt] for a complete
time interval 0 <t <7 . This may be done using the method
suggested in Sec. 5 for the numerical verification of algebraic
stability. First, in Table 8.3 we list the numerically computed
eigenvalues of LN . Observe that all the eigenvalues ©f Ly have

negative real part. (This result will be shown rigorously later.)
Therefore, l]exp(LNt)ll + 0 as tox for fixed N. Thus

the Chebyshev approximations are asymptotically stable in the
sense that they remain bounded as t*<« with N fixed.

In Figs. 8.3-5, we plot the Ll—matrix norm of exp(LNt)

vs t for N=5,15,25. Observe that as t-o= for fixed N,
Ilexp(LNt)lll approaches zero while it grows slowly (like Nl/z)
as N>, for fixed t<2 (Note that growth of Hexp(LNt)Ill
like .Nl/z as N-o= is not inconsistent with growth of

1/4

||exp(LNt)||2 like N/7.) Also observe that the norms seem

to have a boundary layer at t=2 such that Hexp(LNt)Hl >

as N-= Jor t<2 and >0 as N»e» for ts2. This behavior

is consistent with the unboundedness of exp(Lt) for <2 [see (5.4)].
. Asymptotic stability does not prove stability because Ly is
not normal. The next step in the computational proof of stability

is to compute numerically the Liapounov matrices HN satisfying
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Table 8.3

N Galerkin Tau Collocation
10 -2.4532 -2.9994 -1.9306
20 -2.5932 -3.9320 -2.1591
30 -2.7267 -4.5380 -2.3247
40 ~2.8495 -4.9918 -2.4659
50 -2.9669 -5.3837 -2.5965
60 -3.0824 -5.7266 -2.7226
70 -3.1985 -6.0489 -2.8478
80 -3.3162 -6.3650 -2.9738
90 - =3.4365 -6.6861 -3.1017
100 -3.5597 -7.0229 -3.4335

Table 8.3. The real part of the eigenvalue of LN with
least negative 1eal part for the collocation, tau, and
Galerkin spectral approximations to (8.1.3). Since all the
eigenvalues of LN have negative real parts, these spectral

methods are asymptotically stable as t -,
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*
- -1 (8.6)

A good method to compute HN is described by Bartels & Stewart
(1974). 1In Table 8.4 we list the condition number of HN for

the Galerkin, collocation and tau methods. This table suggests

that the condition number of H. grows at most like N> as N
N,

for the Galerkin and collocation methodsf and like N2 for the
tau method. Recalling (5.11), we obtain
3 _

2
|| lexpilygtl{[= 0 (" e ™) .

et

N

(8.7)

for all three methods. It should be noted that (8.7) gives only an
upper bound for | lexp[Lyt]l|| . According to the theory given in
Sec. 5, this upper bound can be sharpened by at most l]LN]] = o)
(N»=), explaining the origin of the difference between the estimate

1/4

‘(8.7) and the observed behavior N of the computed Lz—matrix

NOorms.
In the above discussion, we have given numerical evidence
for algebraic stability of the Chebyshev-spectral methods for
(8.1). We shall now prove rigorously that Chebyshev-spectral

methods for (8.1) are algebraically stable.

Proof 6f Algebraic Stability for Chebyshev-Galerkin Approximation

In the Chebyshév—Galerkin approximation to (8.1), we represent

the spectral approximation Uy by the series

N
= n
ue = I a ()T ~(-1)"1,] (8.8)
n=1 _ -
t s ' 5/2

The condition number of Hy can grow no faster than N as
N-+o, To see this, we note that (5.14) gives HH;]ll |= O(Nz)
while (5.13) and the results that || exp(LNt)]] = 0(Nl/4) for t<2
and Ilexp(LNt)]] +0 as N=»® for t>2 give IIHN|1= O(Nl/z)

as N7
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Collocation

Table 8.4

N Tau | Galerkin
10 4.1463 x 10° . 3.1090 x 102 4.6388 x 10° |
i i
20 3.0332 x 10° | 1.2421 x 10° 3.2672 x 10°
30 9.8746 x 10° | 2.7938 x 10° | 1.0464 x 10°
40 2.2940 x 10* | 4.9662 x 10° | 2.9083 x 10? |
: | i !
50 4.4220 x 10 | 7.7593 x 10 | 4.6138 x 10? |
| l |
Table 8.4. The condition number HHN|[|]H;1[| in the
L2 matrix norm of the Liapounov matrices HN for the

collocation , tau, and Galerkin spectral

For the collocation and Galerkin methods,

to . grow

at most

3

like N

method.- it seems to grow like N
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Recalling (2.34), uN satisfies

3 ' N T (x)
e )
n=0 n

-1t . (8.9)

We can determine TN(t) by equating the coefficients of xN

in (8.8):

Let us now multiply both sides of (8.9) by 2(l—x)uN and integrate

. ) . . 2,-1/2
with respect to the Chebyshev weight function (1-X%7) /2, Thus,

the left-hand side of (8.9) ‘becomes

1 3
2 { (1- x)uN[ e 7;?1(1- 2y-% gy
1 1 L9
d \-% 2 = uN 2
= It -{ (l—x)(l-xz, uNdx+;{ (l—x)%(l+x) % %
a ! 2,-3 2 3 -3 o 1
= 3t _{ (1-x) (1-x7) % wgdx + (1-x) % (1+x) "% ug !-1
1o YT ot
+ [ ugl3(l-x) F(1+x) ® 4+ 3(1-%) (1+x) 2] dx (8.10)
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The boundary term in the last expression vanishes because Uy

is a polynomial satisfying uN(—l) =0 . Also,

N N
(1-x)uy = (1-x) } an[Tn—(—l)nTO]=;£lan[Tn°(-l)nTo]

n=1
N
'nZlan[ 3 Moy + Tpop) - (D77
N N N . . )
_nglan[Tn-(-l) TO]—%nzlan(Tn+l—(—1) T,1 - *nélaniTn-l-<-l> 7]

8.11)

The first and third sums on the right in (8.11) are orthogonal

to the right side of (8.9). The inner product of (l-x)uN

with the second sum on the right in (8.9) gives

da
- T _\N = _T N
4( 1) TN aN Fay g (8.12)
Combining (8.10) and (s.l2), we obtain
3 fl<1—x)(l—x2)' 2 9x+ 2 4 32 < (8.13)
dt 3 N g8 dt °N y

This inequality proves that Uy is stable in the new norm defined

in (8.13):




-1/2 I

1
[ul]1? = [ (1-x%) (1-x%) u(x)] %dx . (8.14)
21

Observe that (8.13) implies that the eigenvalues of LN have non-

positive real parts.

It remains to prove that the norm defined by (8.14) 1is
algebraically equivalent to the usual Chebyshev-—L2 norm. That
is, we must show the existence of two functions cl(N) gnd cz(N)

such that for every Nth degree polynomial Uy

1w 1 (1-x)u? 1 w2
c - dx < ——= dx < c, { dx  (8.15)
1 -1 vV1-x2 -1 Yy 1-x -1 /1-x2

where l[cl(N) and CZ(N) grow‘at most algebraically as Now.
The second inequality in (8.15) holds with c2(N) = 2 Dbecause
l-x<2.

The first inequality in (8.15) 1is more difficult to

establish. By the mean-value theorem,

1 1 5 . 1 1rN2
i =S uy dx =(1-g) [ . dx (-1<gy<1)
"1/ 1-x -1 /&—xz

Howéver this does not prove the reéuired inequality because it is
not clear thaf l/(l-gN) is bounded algebraically as N->= for all
polynomials. |

To establish the first inequality in (8.15) we use a different

approach. We substitute the Chebyshev polynomial expansion
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and obtain

1 2 N
2 (l-x)u
7/ (1% %y dx = 2a° - 2a,a. + T a2
“1 0 071 n
n=1
1-x
N
-1 } (a_ a +
2 n=2 n “n-1 2n an+l)
= T
(ao...aN) HN (ao...a ) .
where HN is the symmetric, positive definite, (N+1) x (N+1)
tridiagonal matrix whose elements are
C. if 9 =
3 if 3 k
-%cj if §j = k-1 :
(B = , (8.16)
—%ck if j = k+1
0 otherwise,

where Sy = 2, c, = l if n > 0. To complete the demonstration of

the first inequality in (8.15), we must show that HNicl(N)I

where cl(N)>0 and l/cl(N) is bounded algebraically as N-w,

Since By is nearly a constant-diagonal tridiagonal matrix, the

eigenvalues of HN can be studied by standard techniques: if
DN = det(HN—XI). then DN satisfies the three-term recurrence
relation
D, = (1-\)D. . - =D (N>2) (8.17)
N N-1 4 —=0r '

N-2
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Since (8.17) has constant coefficients, it is easv to solve

exactly. From this solution, it_is not hard to show that the

smallest eigenvalue of HN satisfies

2
(I?) ~ -1-2— (N>o)
min 8N
Choosing ¢, (N) = A (N) gives 1/c, (N) 8'N2/n2 (N->w)
1 min 1 - * )

This proves that the norm defined by (8.14) is algebraically
equivalent to the Chebyshev norm and, therefore, Chebyshev-Galerkin
approximation to (8.1l) 1is algebraically stable. Note also that (8.13)

shows that the matrix HN- defined'in (8.16) satisfies (5.7b) with

c(N) = 0. since [[Hy|| = 01) and ||Hg'[] = ow®), (5.1D)

n!
implies that | |exp(Lgt) || = 0(N) as N»=, which also follows
directly from (8.15).

We have not yet been able to obtain a rigorous demonstration

that [Iekp(LNt)|| =0 (7% ‘as N»=» as found numerically in
Table 8.2. Our best result to date is [|exp(Lﬁt)|| = 0(N) as
N>,

Although the problem (8.1) is not well posed in the Chebyshev norm

(as shown in Sec. 5), it is well posed in the norm defined by (8.14).

Using (8.1) and (8.3), we obtain
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1
f
1
=-1l v
2 -1
Thus,
1
dt I+x
-1
so that ||elt|[<1

Proof of Algebraic

3/2

(1+x) "~ dx < 0.

in the norm (8.14).

Stability for Chebyshev-Tau Approximation

The proof of
to that just given

approximation u,

where

algebraic stability for the tau method is similar
for Galerkin approximation. The Chebyshev-tau

satisfies

o P
N, My
ot ox

= TN(t) TN(X) (8.18)
uN(-l,t) =0
N .
ay = 12 T, (8.19)
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Therefore ,

2 -
224 da N-1
N N
) N NN (8.20)

Mprecveg, ~omparing the coefficients of xN on both sides of

(8.18) we find

daN
TN(t) = ?ﬁ? R (8.Zl)
Egs. (8.18-21) imply
auN 52 . 32 da
Uy uN T
(g (=) 50 + ( % U Xgmp) = - 2V (@) (s.22
Since
duy
5T Ix=-1=0,
we obtain
dug 52 1
2(—— , (1-x) N 1/2 -
3T ! ) = 1- 172
9Xot {l (1-x) (1+x) 3(3uN/8t)2/3><dx
fl 1/2
= (L=x) 7% (14x) 73/2 2
! (1+x) (auN/at)

Therefore,(8.21) gives

-1
(8.23)
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: au
This proves that the evolution of —— 1s stable in the norm

ax
- au
(8.14). Finally, the boundedness of ?ﬁg implies the

boundedness of Uy, as will now be shown. If Uy is given

by (8.19), then

du,, N-1

ax DEO b Tn

where
c b -b
-1"n-1 +1 :
a = ———f— 1= (n=1,...,N)
The boundary condition uN(-l,t) = 0 requires that
)
a = a
0 n=1 =o
Theref i 3y ] ; ' ;
erefore, since 1s bounded algebraically as N+», so is u..
Tx N

In Sec.ll we present a variety of numerical results for
the numerical solution of (8.1) by Chebyshev and Legendre spectral
methods.

Effect of Boundary Conditions on the Stability of Spectral Methods

- Let us discuss the effect of boundary conditions on the
stability of the Cheybshev approximations to (8.1). In Sec. 6 it
was shown that incorrect treatment of the boundary does not affect
the stability (though it does affect the convergence) of the Fourier-
Galerkin method. This is not the case for the Chebyshev-spectral
methods. Let us assume that we solve (8.1) ignoring the boundary

condition (8.3) and suppose that uN(x,O) = TN(x). The resulting
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system of Galerkin equations for {an} is

_ Ban 5 ?
= =-= pa - {8.24)
t °n p=n+1 P
ptn odd
where a_(0) = SnN' Eg. (8.24) can easily be solved: ay_y (t)

is a polynomial “n t of degree k of the form

ay_y (t) = Ac%k(-Z)k (]Ij) KoL (8.25)

This solution is clearly not bounded by any finite power of N.
Thus, the Chebyshev methods are algebraically unstable when no
boundary conditions are applied;

If we had imposed the boundary condition u(+1l,t) = 0 in
addition to, or instead of, the boundary condition u{-1,t) = 0,
then Chebyshev-spectral solution to (8.1) would be unstable.
With u(+1,t)=0 instead of (8.3), the Chebyshev-spectral approximations
to the operator -9/39x all have eigenvalues with positive real parts
(that grow as N + =), Similarly, if we tried to impose the extra
boundary condition 3du(+l,t)/39x = 0 in addition to u(-1,t)=0 [as
is frequently done with finite difference methods], an unstable
scheme would result. )

The effect of imposing u(+l,t) = 0 in addition to u(-1,t) = 0
is slightly different for Legendre-spectral methods. With u(-1,t)=
u(+1l,t)=0, Legendre-spectral methods for solution of (8.1) are

semi~bounded. 1In fact,
_ 1
(v,[L+Lj v) = =2 f viv/3x dx = 0
-1

when v(*1l,t) = 0, so these methods are semi-bounded and stable.
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However, these spectral approximations are not consistent.
For example, Galerkin approximation involves expansion of
u(x,t) in terms of the functions ¢2n(x)=P2n(x) - PO(X)
¢2n+l(x)=P2n+l(x)- Pl(x) that satisfy ¢n(t1) = 0.

But 3u/9x cannot, in general, be expanded in terms of the

functions 92 (x) .

The above situations are typical of rapidly converging
spectral methods. Spectral methods are extremely sensitive to
the proper formulation of boundary conditions. When proper
boundary conditions are imposed so the problem is well posed,
the methods yield Qery accurate results; when improper boundary
conditions are mistakenly applied, the methods are likely to be
explosively unstable. The formulation of stable and convergent
spectral methods is strikingly similar to the formulation of

well-posed initial-value problems for the continuum equations.
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9, Time Differencing

In previous sections we have investigated the properties of
spectral approximations to the spatial operator L of the

difterential equation

Ju _
E Lu .

In this section we investigate the properties of time-integration
techniques.for the solution of the semi-discrete spectral approx-
imations

su
N - pu (9.1)

ot NN

Time discretization errors in both finite difference and
spectral methods are typically much smaller than are spatial
discretization errors. There are two reasons for this: (i) time
steps are frequently restricted in size by explicit stability
condiéions -- stability of -the time integration reguires that
time~differencing errors be small; and (ii) many problems involve
several space coordinates so aﬁy possible efficienéy in the
representation of the spatial variation of the dependent variables
is quite important to the overall efficiency of the method-- if
the number of degrees of freedom necessary to describe a certain
three-dimensional field accurately can be reduced by two in each
space direction then the total number of degrees of freedom is
decreased by a factor 8, but a similar improvement in time

differencing gives just a factor 2. We will investigate

here only finite-difference methods of finite-order accuracy for
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timewise solution of (9.1) despite the infinite-order
accuracy in space of many of the spectral -methods discussed
in earlier sections; No efficient, infinite-order accurate
time-differencing methods for variable coefficient problems -
are yet known. The current state-of-the-~art of time-integration
techniques for spectral methods is far from satisfactory on both
theoretical and practical grounds and the results to be presented
here must be regarded as only a beginning.

One of our prime goals is to investigaté the stability of
time differencing methods for the solution of (9.1 ). To do
this we must first explain how to extend the stability definitions
given in Sects. 4 and 5. Let ug(x) = G&(x,nAt) be the approx-
imation to the soiution of { 9.1) at time nAt, where At is a
time step. Time differencing methods involve approximating (9.1)

] n+l

in some way to give a rule for constructing uy T

n+l _ n
ug - = KN(At)uN , (9.2)

wheére Ky is an operator acting on u

it follows that

N- Using this rule repetitively

A\ _ n
uN(x,nAt) = [KN(At)] uN(x,O), (9.3)

where, for notational simplicity,we assume At fixed. We say that

(10.2) is strongly stable if

|11y (A0)17]] < K(nat) (9.4)
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for all N and n sufficiently large and At sufficiently small.

Here K(T) is a finite function of T. We define generalized

r+sT

stability by replacing K(T) in (9.4) by N X(T) as in(5.2).

A sufficient, though not necessary, condition for strong

stability (9.4) is
1K (At) || -1 < xAt (9.5)

for some finite «k and all At sufficiently small. If KN(At)

is a normal matrix then strong stability is assured in the L, matrix

2

norm if the eigenvalues A of KN satisfy the von Neumann condition

max|A| < 1 + xAt (9.6)

for sufficiently small At. If Ky is not a normal
matrix, then ( 9.6) is still a necessary, though not

sufficient, condition for stability in the sense of (9.4 ).

The importance of these stability definitions is that they
lead to the fully discrete form of the equivalence theorem (see
Sec. 4): a scheme is consistent if

KN(At) - I

V(=% - L)u]| >0 (9.7)

as N+ » and At - 0 for all u in a dense subspace of H; 3

scheme is convergent if
]Iug - u(nat) || + 0

as N » ® and At + 0 for all n satisfying O < nAt < T and
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gll u(0) s%. The equivalence theorem states that for consistant
approximations to well-posed problems, stability is equivalent
to coﬁvergence.

Let us now study the stability properties of some
specific time~differencing methods.

Implicit time-integration methods

Two time-integration methods that are unconditionally stable
in the generalized sense for every algebraically stable spectral method

are the Crank-Nicolson scheme and the backwards Euler scheme. For any

semi-discrete spectral approximation (9.1) to u, = Lu, the

t
Crank-Nicolson time-~differencing scheme is given by

= T n
n+l n _ N N
Uy - ug = At LN( > ) (9.8)
and the backwards Euler scheme is given by
n+l n n+l
- = u
Un Yy At I"N N . (9.9)

Let us prove that (9.8) and (9.9) are stable in the generalized
sense. If (9.1) is algebraically stable there exists a family of

positive definite Hermitian matrices {H_} such that

N
L * .
HN N + LN HN < o (N) HN E
or, equivalently,
1/2 -1/2 -1/2 * 1/2
Hy Ly Hy + Hy Lg* Hy < a(N)I,
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where a(N)<d &nN for some finite d. Substituting

n 1/2 n
Yy = Hy Uy
into (9.8-9), we obtain, respectively,
n+l, = n-1
v +v
n+1l n o_ N N
Yy -vy = At MN ( > ), (9.10)
n+l n n+1
v - = 9.11
N VN At MN vN , ( )
where
_ 1/2 -1/2
MN HN LNHN -
Taking the scalar product of (9.10) with"
vy + v§+l, we get
*x
n+l, 2 n,,;2 At n+1 n MN+MN n+l n
v -]V = == :
vy =1L 5 (v, ) (=) (v T )
alAt n+1l n,; ;2 oAt n+l, 2 ;. n;,2
< 28E | v ey PP 28 e MY e v P
(9.12)
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Therefore,

n+l,,2
| v o1 L1+ %aAt)||an||2, (9.13)

N ~ 1I< L aht)

which proves generalized stability for VN and, hence, also for

_ -1/2
uN = HN VN.

Similarly, we may show that the backwards Euler method

is unconditionally stable in the generalized sense. Taking the
n+l n

scalar product of (9.11) with vy = + v gives
on+l 2 ng,2 _ n+l n n+l
n+l n+l n+l
= At (MN YN , 2VN - AtM vy )
n+l, , 2
< adt [y T (9.14)
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so that

n+l, 2 1 2
I "<

n
I I VN l"OCAtl lVN l I ’

proving generalized stability of vy

Note that the above proofs show that if a«a(N) is a bounded
1/2

and, hence, Uye

function of N then vy = HN

the Crank- gicolson and backwards Euler schemes.

Uy is strongly stable for both

Spectral approximations using Fourier series

Next, we consider several time integration

methods for Fourier series spectral approximations to

ut + ux = 0

with periodic boundary conditions. As shown in Sec. 6, the

collocation equations are

Ju 1

N _ -
s~ = C "DCuy (9.15)

where the 2N x 2N matrices C and D are defined in (6.3).
The 'leapfrog' time différencing approximation to (9.15) is
the explicit two-level scheme
n+l n-1 1

.- n
U.N - LIN = 20t C DCUN (9.16)

Thus, in the leapfrog scheme

n-1
N

1

n - n
KN(At)uN = u + 2AtC DCuN ‘
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so KN is a two-level evolution operator since it depends on

both ug-l and u%. The definitions of stability, convergence,

and consistency given above extend easily to this case.

We shall show that (9.16) 1is strongly stable provided that

1

ZW(N-l) (9.17)

At <

To show this we first recall from Sec. 6 that C 1is unitary

1

and D is skew-Hermitian. Therefore, A = C "DC is also skew-

Hermitian, and hence normal, so that

l1a]] = 2m(N-1) .
Now we take the inner product of (9.16) with u§+l + uﬁ_l
to gét
+1,2 -1,,2 +1 -1
|]u§ | ||u§ L1° = 2AtRe(u§ + u§ , Aug) ,
since uﬁil and ug are real. Since A* = -A, we obtain
‘n _ n+l ny; 2 +1 n
Ug = Hug 1+ [ lugl] -42AtRe(u; , Auy)
= ||u§[|2 + [ Jui M| - 28tRe(u}, anh =g 27t
so-tlg =tlg . Schwarz' inequality implies that
n+l n n+l n
Re (@, auly] < 11Al] TR ] | 1uD ]
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so that if (9.17) is satisfied, i.e. At]|A|] < 1-e¢ for some e > 0

n+l
|28tRe (0™, Aug) | < 2(1-¢) | [ul*h)) [1uR] ] .
Using this result, we obtain
+1
ST 11+ TIagl 1%+ -e) ([ Jug*t ] - [[ul]])2 < uR = o0

(9.18)

Since Ug is a bounded function of N (because of the smoothness of

n+1H

the initial conditions), we see that HuN

and n, proving strong stability.

is bounded for all N

another way to prove that tue leapfrog and Crank-Nicolson time
differencing schemes are strongly stable for (9.15) is to use a
modal analysis, which is justified because A is normal. Thus,
if ug is an eigenfunction of A with eigenvalue ‘A , the

Crank-Nicolson approximation to KN(At) is

w0 = 1 -1 0
Ryldthug = (1 + 3 Aa£)/(1 - 5 Aat) ug | (9.19)

Since the eigenvalues X of C_lDC are all pure imaginary. it

follows that l|KN(At)|| = 1, so Crank-Nicolson differencing is

stable.

Still another time differencing method for solution of (9.15)
is to use a Runge-Kutta scheme. It easily verified the first and
second-order Runge-Kutta methods are unstable unless At satisfies
conditions that are much more restrictive than (9.17). With the

first-order Euler method

. ’ n+l _ n n
uN = uy + AtAuN ’ L




stability requires that N2At be bounded as At - 0 [because

[JKN(At)[|= 1 + 0(N? at?)1 ; with the second-order scheme
~n+l/2 _ n 1 n
YWy = Uy + 3 AtAuN
ntl _ n ~n+1l/2 -
uN = uN + AtAuN ’
4/3

stability requires that N At be bounded as At - 0. However,
the third and fourth-order Runge-Kutta methods give conditional
stability restrictions like (9.17) which we will now derive.

The third-order Runge-Kutta scheme may be written for a linear

equation like (9.1) as

Pl o 1o+ ata + 1/2(8t8) 2 + 1/6(ata) 31 = K (At) uD.
N N N N
(9.20)
Since KN(At) given by (9,20) is normal,
2 3
| 1Ky (At) |] = max |1 + XAt + 1/2(AAt)° + 1/6(XAt) l)
X

where the maximum is taken over all the eigenvalues of A.
eigenvalues of A are ik with |k| < 2w (N-1), so (9.6 )} is

satisfied provided that

At < -Z-ﬂ—(‘?]_Tl-)- . (9.21)
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Thus, this method allows time steps that can be ¥3  times
larger than with the leapfrog scheme while maintaining stability.
However, if the operator A 1is complicated, the third-order
Runge-Kutta scheme requires about 3 times as much work as leap-
from at each time step, so it is probably not competitive.

Similar analysis of the fourth—order Runge-Kutta scheme

gives the stability condition

At < i?ﬁég;7' . (9.22)

Thus time steps can be nearly three times larger than with
leapfrog steps. However, fourth-order Runge-Kutta differencing
requires about four times the work of leapfrog differencing, so
the scheme is probably not too useful unless very high accuracy
is desired;

Now we shall consider time-differencing methods fér Fourier
series spectral approximations to the heat eguation with periodic
boundary conditions:

Collocation using Fourier series gives the spectral equations

——~ = C "DCu '
3t N (9.24)
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The matrix C-l DZC is negative definite. Because (9.19) still
holds and all eigenvalues )\ are negative, Crank-Nicolson time
differencing is unconditionally stable. On the other hand, it

is easy to show that leapfrog differencing is unconditionally

unstable. In fact, if ug is an eigenfunction of ¢ 1p%c with
eigenvalue X < 0 then I[KN(At)nugll grows like .
(-AAt + /l+(AAt)2)n ~ e_A(nAt) as At - 0 for fixed A and
nAt. Since max|i| = 41r2(N-l)2 grows like N% as N - ®,
IIKN(At)nugll cannot be bounded be a finite function of nAt
for allv N, proving unconditional instability.

Another way to solve (9,24) 1is to use a generalized Dufoft—
Frankel scheme

u§+l - uy -1.2 . n 2, n+l n n-1

AT = C ™D CuN - YN (uN - ZuN + uyg )
(9.25)

If v Z'ﬂz then this method is unconditionally stable

(Gottlieb & Gustaffson 1976).

Similarly, Euler time differencing of (9.24) is conditionally

stable. Stability requires that

At max|A| < 2 or At < [2w2(N~1)2]_1. (9.26)
( :

-

Higher-order Adams-Bashforth schemes have similar conditional

stability limits.
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Time-differencing for mixed initial-boundary value problems

Some care is necessary in the formulation of time-
differencing methods for spectral approximations to mixed
initial-boundary value problems. The sensitivity of spectral
methods to the proper formulation of boundary conditions,
as shown in Sects. 6-8, carries over to the formulation
of time-differencing methods for these approximations. For
example, for most mixed initial-boundary value problems leap-
frog time differencing is unconditionally unstable for spectral
approximations. Furthermore, explicit time integration methods
may be unduly restricted by conditional stability requirements
'in spectral approximations. The origin of these severe
restrictions is the very high resolution of spectral methods
near boundaries. Thus, it is frequently necessary to combine
special kinds of implicit time-integration methods with spectral
approximations in order to maintain high accuracy at reasonable
computational cost. Several examples will be given later.

~Let us begin by studying time~differencing methods for
the Chebyshev-spectral approximation to the mixed initial-

boundary value problem (8.1-3):;

u, + uX =0 (-lﬁxil, t>0), (9.27)
u({x,0) = £(x) (-1<x<1), (9.28)
u(-1,t) = 0 (£50). (9.29)
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In Sec. 8, ‘e proved that various semi-discrete spectral
approximacicons to (9.27-29) are algebraically stable.
Let us first consider the leapfrog time-differencing

scheme

L = uy + 20t Ly ., (9.30)

where ug(x) is the time~discretized approximation to
uN(x,nAt), At is the time step, and the semi-discrete
approximation is BuN/Bt = LN Uy

This scheme is unconditionally unstable for any At as N»w,
To show this we recall that in Sec. 8. we proved that the

eigenvalues of L have negative real part (see Table 8.3)

N
and that the largest eigenvalue of LN has a negative real
part that grows like ‘N2 as N+», Let us rewrite (9.30)

in the 2 x 2 block-matrix form

u§+l 2 At LN I ug
= (9.31)
ul I o/ u§-l
If the eigenvalues of LN are denoted as luys then the
eigenvalues of the matrix on the right in(9.3v are
WE s aes/1 e e
(9.32)




For fixed N and At>0,

- -u At
A= N+ 0e?),
(9.33)
Thus
- “u.nit
E(N)] T=(nte ¥ ( 1+ 0(At)) (0<ndt<T,At>0)
(9.34)
Since IIKN(At)nllilké—)ln and there are eigenvalues of

LN with negative real part of order N2, no inequality of
the form (9.4) can be satisfied. Thus, leapfrog time
differencing of the Chebyshev approximations to (9.27-29)

is unconditiocnally unstable.

There are several conditionally stable explicit time-
differencing approximations that can be used with spectral
approximations to (9.27-29). Two examples are the Adams- _

Bashforth scheme

n+l up + 3 At LY = 2 At Lt (9.35)

and the modified Euler scheme
~n+l _ ug + At Ly uﬁ : (9.36a)
u§+1 = u; + % At LN ug + % At LN %§+1 (9.36b)



The modified Euler scheme (9.36} is in practice stable provided

the stability condition

8
At < 2 (9.37)

is satisfied. A similar stability condition holds for the
'Adams-Bashforth scheme.

The fact that the stability limit in (9.37) depends
on l/N2 rather than 1/N is not very surprising

because the Chebyshev collocation points {cos mn/N: n=0,1,...,N}

are spaced by a distance of order l/N2 near the boundaries.
Since, the wave speed in (9.27) is 1 the wave propagates from
one grid point to the next in a time of order l/N2 so time
steps must be smaller than this to maintain expliéit stability.
The explicit stability restriction (9.37) for Chebyshev-
spectral methods with N polynomials should be contrasted with

the corresponding stability conditions for finite difference

approximatiors to (9.27-29), with N gridpoints uniformly spaced

in the interval -1l<x<1l, the grid spacing is 2/N so the
Courant stability condition is At <2/N. As N»=», this

stability condition ion finite difference schemes is much

weaker than the condition (9.37) on the spectral approximations.
A semi-implicit technique that permits stable time-differencing
with spectral methods with a stability condition like that

of finite-difference schemes will be discussed later in this

section.




In order to prove that the modified Euler method (9. 36)
is stable, we begin by noting that (9.36) is equivalent to the

second-order Taylor series method

n+l

1 2 2 n _ n
Uy o= (I + At Ly + 3(A8) 7 L") uy =_GN Uy (9.38)

A sufficient condition for algebraic stability of (9.38) is
the existence of positive-definite symmetric matrices Sy

such that

and the condition number of SN satisfies

Hsgl 1TTsgh ] = ov®) (e (9. 39b)

‘for some finite B8 . If (9.39) holds then

' n T n-1 n-1
(GN) SN (GN) i (GN) SN (GN) ... < Sy

so that

-1/2 T n ,1/2 .1/2 n .-1/2
Sy (Gy) ™ 8y ° sy " (6" sy <

Therefore,

l1s5/% ™ s32 <1,




so that

-1/2 ~1/2
211 = e ™ w3l i<l Isy 21 sy 2 o™ sgt/ 21|

s 2RI = 0 o (a3l ().

To complete the stability proof we must investigate

under what conditions matrices SN satisfying (9.39) exist.

One choice for S is just the Liapounov matrices of Lg.i-

these matrices satisfy
-8,y L, + LT S, =-1I (9.40)
N °N N "N

From Table 8.4 we observe that the Liapounov matrices for spectral
approximations to (9.27-29) have algebraically bounded condition

number. Using (9.38) , we obtain

cIs G = [I+AtLE+ % (At)z(Lé)T

1 2 2
T Sy Gy N 1 sy [T+atngrs(a8) (@) 7]

or

T _ T
GN SN GN— SN+At (LN sN+ sN LN)

+ 2T s L+ S, LS ]

1,0y 2 2.7 2
+ 508)° L) " Sy e R

A

o e’ 2

1 3 2. T . T 2 1 2
+ + =




From (9.40), it follows that

2. T . _ T
(LN) Sy * Ly Sy Iy = ~Ly
T 2 -
I.NSNLN+SNLN —LN
2. T T 2 _ _,T
(LN) Sy I..N + Ly Sy Ly = Ly Iy
so that
GT'S G.. = S. - AtI -%(At)z [LT+L]
N °N °N N N N
-%- (At)BLE] LN+-11-(At)4 (Lﬁ)T N Lfl

Thus , (9.3%9a) is satisfied provided that

T
TAt (D + Ly 221 | (9.41)

N .
A Iy Sy By £ 2 (9.4 2)

If (9.41-42) are satisfied then the modified Euler method for
(9.27-29) is algebraically stable.
At first ; it may appear that the stability condition

(9.42) is much more severe than the stability condition

(9.41). The Liapounov matrices of Chebyshev polynomial
approximations to the wave equation satisfy [ISNll > 0(1) as

2
N + « while the operator Ly satisfies HLNH = 0(N°) [see Sec. 8],
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so that (9.4 2) seems to fequire that At=0(l/N4) as
N+o, However, the stability condition (9.42) 1is no
more restrictive than the stability condition (9.41)
To see this we use (9.40) written in the form

T -1 T -1 _T

S LN LN + (LN) L.s. L. =-1I

Ly Sy N °N °N

to obtain the representation [see (5.13)]"

T - )
-1.T -1
LN SN LN = ‘f exp[(LNl) t] exp[LN t] dt .
0 (9.43)
It may be shown that the norm of the integrand of (9.43)
is 0(1l) as N » « for t = O(NZ) and that the norm decays
rapidly to zero as t > <. Therefore,
T 2
||LN SN LNII =0 (N7) (N>) (9.44)

showing that the stability condition (9.42) is of the form

At = o(l/Nz).
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gemi-implicit methods

When explicit time-stepping methods are used to solve

semi-discrete spectral equations for the hyperbolic problem

3

(o]

+alx) 32 =0 (-lix<l) (9.45)

Q

t

with appropriate boundary conditions [that depend on the sign
of a(x)], there result stability conditions of the form
1 1 1 }

! N
v a)]  §%|a(-1)] Talp ]

(9.46)

At < min {

These stability limits can be derived heuristically from the

Courant stability condition

£ < (9.47)
. [aggel

where aeéf is the effective Wave propagation speed in a

direction in which there is effective grid resolution Axeff‘

Near the boundaries x=%1, the Chebyshev-spectral methods have
resolution AXeff = 0(1/N2) as N+ while afg = a(xl); 1in

the interior of -1<x<1, Chebyshev series have effective resolution
Axeff = 0( % ) as N»o while the largest wave spped is max|a(x)].
Thus, (9.47) implies (9.46) for the Chebyshev-spectral methods.

The stability condition (9.46) is too severe for many

applications because it requires that At = O(l/Nz).
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In order to relax this severe constraint, we use a semi-implicit
method in which the propagation through the high-resolution boundary
is treated implicitly, but the propagation through the interior is
treated explicitly.

One possible semi-implicit scheme is the following two-step
method . Let LN be the Chebyshev-spectral approximation to
~-a {x) f%’ with appropriate boundary conditions applied, and
g, L; be the Chebyshev spectral approximétions to the
constant coefficient wave operators - a(+l)3/3x, =-a(-1l)3/3x,

L

respectively, again with appropriate boundary conditions applied.

A semi-implicit two-step scheme is given by

1 1

n+> _ 1 - N+  n 1 - r- n

U.N TAt LN uN = u.N + TAt (LN LN) uN (9.48a)
n+l i + n+l n+l +, .n+-

u - = T 4+ L -

uy Tt Ly Wy ue At (LN LN) Uy 2 (9.48b)

The scheme (9.48) is stable if the stability condition

1l .
Atf Nmaxla(x)[ (9.49)

is satisfied.
The condition (9.49) is sufficient to ensure stability,
but the semi-implicit scheme (9.48) may be stable even if

(2.49) 1is violated. If max|a(x)|<|a(l)] or maxfa(x)|<|a(-1)],




(9.48) is usually unconditionally stable for sufficiently
large N (see Sec. 8 of Orszag 1974). The implementation
of (9.48) on a computer is straightforward and efficient; the
properties of Chebyshev polynomials summarized in the Appendix
show that the implicit equations (9.48) are essentially tridiagonal
matrix equations.

The reason that the semi-implicit method outlined above
does not have a stability restriction like At = 0(1/N2) can be
understood as follows. By subtracting Lg and LE in succeeding

half time-steps, the explicit part of the calculation is similar

to that in solving an equation of the form

Ju 2 du _
a—t- + (1-x") b(x) a_}E =0 (9.50)
where the wave speed vanishes at x=+1. If b(x) = b, a

constant, the Chebyshev—-tau equations for (9.50) are just

dan .1

E’= c—n-b [(n-l) aln_ll (n+l) an+l ] (9.51)
where Sy = 2 and c, = 1 for n>0. By Gerschgorin's theorem,
|]LN|| for (9.51) satisfies

| 1Tl = 0(bN) (N») , (9.52)

so the explicit time step restriction is At = 0(1/bN) as

No=,
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We note that Chebyshev-spectral approximations to (9.50)
are stable when no boundary conditions are applied. In fact,

using Galerkin approximation and the Chebyshev inner product,

we obtain

au du
N Zedy N =
(ugr 55 + b(1-x%) ax) 0 .
SO
2
1 u 1
< Noax = -bf /I A ol ax
-1 /1-x2 -1
1 xuN2 1 uN2
= -b dx < |b| f dx
“1 /1-x2 “1 Y1-x2
Therefore,

||uN(t)H2 < elb[tlluN(O)H2 .

Proving stability.

There are other attractive semi-implicit schemes for (9.45).

For example, suppose a(x) 1is one-signed, say a(x)>0, and let

& ax = max a(x) . Define Lgax as the Chebyshev approximation to
1 . s . _
-3 qax IX with boundary conditions imposed at x = -1. A

semi-implicit Chebyshev spectral scheme for (9.45) 1is

n+l max n+l _ n _ pmax n
Uy At LN Uy = uy + At(LN LN ) uy - (9.53)




The scheme (9.53) is usually unconditionally stable and avoids

the severe time step restriction (9.46). It is also easy to

implement efficiently because Lgax is a Chebyshev approximation to

a constant-coefficient wave operatorj
The same kind of trick stabilizes spectral methods for non-

linear equations. For example, if we are solving the equation

during a time interval in which wu(x,t) is smooth (no shock waves),

then we may use the semi-implicit scheme

1 a _ 1 3u
+ L d 2
7Ynax 3% ( 7 Ymax ) ox

YA

in which the terms on the left are treated implicitly in time,
while thése on the right are treated explicitly. Here U oo« is

an estimate of the largest value of u(x,t). Similar semi-~implicit
methods are effective in eliminating.(or at least relaxing) time-
step restrictions for finite-difference methods. The key idea

is to rgcognize the source term of a numerical instability and then

to approximate it by a simple expression that can easily be treated

T D. Haidvogel hag pointed out that the semi-implicit h
(9.53) with L0@ t Sroxim

replaced by a Chebyshev spectral approxi '
to % (bx+c)3/3X, where b+c = a(+1l), c-b = a%—l), is Sgnglmatlon

§tab}e.under tbe weak restriction (9.49). The resulting
implicit equations are still tridiagonal [see (A.9), (A.18)].



Several other examples of semi-implicit methods should make
the general technique clear. For the variable coefficient heat

equation

u, = k (x) U (-lexcl)
with suitable boundary conditions at x =%1 and k(x)>0,

Chebyshev-spectral methods give explicit time-step stability

conditions of the form

pt<min {—b—p , —2 . ——2 } (9.54)
~ k(-1)N k()N N* max k(x)
| x| <1
The very severe time step restriction that At = 0(1/N4) as

N> is due to the high resolution of Chebyshev series near the
boundaries x =*1., To avoid this problem we can use a semi-implicit
method. Let LN be the Chebyshev-spectral approximation to

k(x)az/ax2 and let Lgax be the Chebyshev-spectral approximation
1

to §k 32/3x2 where k = max k(x) . The semi-implicit
max max

max

scheme (9.53) with Ly defined in this way

seems to be unconditionally stable (Orszag 1974) and certainly
does not have any stability restrictions of the form (9.54).
Finally, we comment on the need for implicit or semi-implicit

schemes in multi-dimensional problems. If we wish to solve the

Navier-Stokes equations

(9.55)




for incompressible fluid flcw, the treatment of the various terms
should be guided closely by the type of stability restrictions
they impose.

If v= 0 then we need only consider the types of stability
restrictions induced by the advective term -u.Y4  and by the
pressure term -gp; we will not discuss the effect of the
pressure because it is closely connected to the incompressiblity
condition V.G=0 and is not relevant to the semi-implicit ideas
discussed here. At a boundary of the flow, it is appropriate to
specify boundary conditions on .0 where B is the normal
to the boundary. If the boundary is solid and stationary, then
E.H=O and we are in a situation similar to that modelled by
(9.50). The effective convective speed normal to the boundary
vanishes, so spectral methods exhibit no unusual time stepping
restrictions. However, if fluid is being blown into or sucked
out of the boundary so G.Z;eo, then semi-implicit methods must
be applied to avdid unreasonably restrictive conditions like
(9.46) oﬁ the time steps.

If Q>O, then the viscoué terms in the Navier-Stokes egquations
shoulq be treated implicitly tc avoid unreasonable time step
restrictions due to the high resolution of spectral approximations

near the boundary.



10. Efficient Implementation of Spectral Methods -

There are two aspects of the efficient implementation of
spectral methods that we discuss here: (i) evaluation of
derivatives; (ii) evaluation of nonlinear and nonconstant . B
coefficient terms; (iii) roundoff errors. More details on . ST

these matters are given elsewhere (see the References). .. .. . ~- 7 ._:-

Evaluation of derivatives I S

An efficient procedure to obtain the expansion-ceéfficients---:- -~. -
of derivatives of a function f£f(x) in terms of the expansion - -:---. -
coefficients of £f(x) 1is to use recurrence relations: zFor: - R
example, to evaluate the term SIIETT o< I SR liTE o Tis o omarT

N ) :
Sn - p=—z‘n+l P ip . T=r - o
p+n odd -

that appears in the Chebyshev equations (2.113,:(2319)};-and- =..2 Z-z=z:-:-

'
in

(2.32),we use the recurrence -3 2 LT oToroTElunoln-

S =58

n n+2 + (n+1)an

+1 (0<n<N=-1) £(18.1) -

with SN = SN+l = 0. In this way, S, 1s evaluated for all an = - =._:

using only N arithmetic operations. The existence of the recurrence ---

relation (10.1) is ensured by the recurrence- property . I R R
Tl Tl - .
- _n+tl _ "n-1 L
2Ty = el n-1 - (D)
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satisfied by the Chebyshev polynomials. Similarly, it is possible
to derive recurrence relations to evaluate efficiently the
coefficients of arbitrary derivatives of functions expanded in

Chebyshev and other classical polynomial expansions.

Evaluation of nonlinear and nonconstant coefficient terms

The most efficient way to evaluate nonlinear and general

. nonconstant terms in spectral approximations is to apply transform
methbds. The key idea is to apply fast Fourier transforms and other
transforms to transform efficiently between spectral representations
of a function £f(x) and physical—space representations of £(x).
With Chebyshev polynomial expansions, fast Fourier transforms permit
the evaluation of arbitrary nonlinear and nonconstant coefficients
terms in order N 1log N arithmetic operations.

In genéral, collocation methods give approximations to nonlinear
and nonconstant coefficient problems that can be more efficiently
implemented than Galerkin or tau approximations. Collocation is
recommended for these problems. For example, the solution of the

hyperbolic problem

au u+x
— + e
t

*le
]

f(x,t) (-1 <x<1, t>0), (10.2)

u(_lrt)

0,
would be difficult using Galerkin or tau approximation but is .

straightforward using collocation methods.
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Let us explain how to march the solution to (10.2) forﬁard

by one time step efficiently using Chebyshev collocation. We introduce

the N+1 collocation points x5 = cos /N (j = 0,...,N)

and represent the current solution u. as

u. = I a cos mnj . (10.3)
n=0 n N
Then we invert (10.3) by the fast Fourier transform to

obtain a, for n=20,1,...,N and calculate
a = 2Sn/cn

by (10.1). Next we evaluate

au

3u ; (1) Tnj
5% z a cos — . (10.4)

using the fast Fourier transform. Finally, we evaluate
exp(uj+xj)(au/8x)j at each of the 'grid' points xj

and use the results to march the solution fdrward to the next

time step.

For quadratically honlinear differential equations, like the
Navier-Stokes equations of incompressible fluid dynamics, Galerkin -

and tau approximations are workable but normally require at least
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twice the computational work of collocation approximation. However,
Galerkin approximation is sometimes very attractive because it gives
approximations that are conservative and have no so-called aliasing
errors (see Orszag 1971lc, 1972 for a more complete discussion of

these properties). Energy conservation properties of spectral methods

are discussed at the end of Sec. 14.

Roundoff Errors

Transform methods hormally give no appreciable amplification
of roundoff errors. In fact, the evaluation of convolution-like
sums using fast Fourier transforms often'gives results with much
smaller roundoff error than would be obtained if the convolution
sums were evaluated directiy. '

On the other hand, the use of recurrence relations to evaluate
derivatives can sometimes be a source of large roundoff errors.

In this case , it is often best to convert the problem being solved
into a new dne that is numerically well-conditioned. An example of

such a transformation is given below.

vExample 10.1: Solution of y"-ky=f(x) by Chebyshev polynomials

The boundary-value problem
y" - ky = £(x) . -;igil (10.5)
y(-1) =4, y(1) =B

can be solved using a Chebyshev-tau approximation. The

resulting approximation YN(X) is given by (see Appendix)

N
Yy (%) = Z a T_(x) (10. 6
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N

1 2 2
— (p"-n") a_ - ka = f (0<n<N-2) (10.7)
n p£n+2 PP P n n - =
p+n even
N N -
Zo (-1 a_ =3, Xo a_ = B, (10. 8)
n= n=

where {fn} are the Chebyshev series coefficients of £(x).
The solution of the system (10.7-8) for the Chebyshev

coefficients {an} may be done in several ways. One Obvious
way to do this efficiently is to write

_ (1) (2) (3)
a, = aj f ca, + San , . (10.9)
(1) . . (1) _ _(1) _
Here an satisfies aN = aN—l = 0 and
1 N 2 20 (1) (1)
— Z p(p°=-n“)a -ka = f (0<n<N-2),
Ch  pen+2 P n n
. (2) o (2) (2)
while a, satisfies aN =1, aN_l = 0 and
N (2) (2)
l; Z p(pz—nz)a - kan = 0 (iniN—Z)p
°n p=n+2 P
(3) . . (3) _ (3) _
and a, satisfies ay = 0, an-1= 1, and
1 N 2 2. (3) (3)
- ) p(p"-n%)a - kdn = 0 (0<ng<N-2).
n p=n+2 P
p+n even
Each of the solutions aél), aéz) , aé3) , may be found L
using roughly N operations by backwards recurrence. When
the constants o« and 8 in (10.9) are chosen so that the )

boundary conditions (10.8) are satisfied, a, given by
(10.9) satisfies (10.7-8).

The above procedure is efficient but it is not usually
numerically stable. Roundoff errors multiply rapidly so that
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a, may have little significance.

A better procedure is to first convert (10.7-8) into a
nearly tridiagonal system of equations. It may be shown that
(L0. 7-8) is equivalent to the system

kcn—Z a - (1 + ken+2 ) a + ken+4 a

4n(n-1) n~2 2(n2-l) n In(n+tl) "n+2
c £ e £ e £

- _n=-2"n-2 _ nt2'n , _n+4 n+2 (2<n<N) (10.10)
4n(n-1) 2(n2—l) 4n (n+l1) -

with the boundary conditions (10.8) still applied. Here

co=2, cn=1 for n>0 aqd en=l for n<w, en=0 for n>N. The

system (10.8), (10.10) may be solved by standard banded matrix
techniques in roughly the number of operations required to

solve pentadiagonal systems of equations. The equations in the
form (10.10) are essentially diagonally dominant so no appreciable
accumulation of roundoff errors occurs. This technique for
solution of (10.5) is very useful in implementing implicit
spectral methods for dissipative terms and for solving Poisson-
like equations (see Sec. 14).

-105-




11. Numerical Results for Hyperbolic Problems

We begin by presenting numerical results for spectral approximations

to the problem

u +au =0 (=1<x<1,t>0) (11.1)
u(x,0) = 0 ,u(-1,t) = g(t), (11.2)
whose exact solution is

g(t - x - 1) (x<t=-1)
u(x,t) = {

0 (x>t-1), (11.3)

If g(t) is smooth, u(x,t) is smooth for |x|<1 when t>2; when
t<2, .u(x,t) is not smooth at x=t-1.

In Sec. 2 we explained how to obtain semi-discrete Galerkin,
tau, and collocation approximation to (11.1-2) using either
Chebyshev or Legendre polynomial expansions. In Sec. 9, we showed
that eithef Adams-Bashforth or modified Euler time differencing gives
stable and convergent results for these spectral approximations. The
numerical results cited in this Section were obtained by Adams-Bashforth
time-differencing; time steps were chosen small enough that time-

differencing errors are negligible.

Comparison of Chebyshev and Legendre Polvnomial Spectral Methods for

Smooth Solutions

When g(t) =-sin Mmt, the solution (11.3) has M complete
waves within leil when t>2. As argued in Sec. 3, we expect that

accurate results will be obtained only if N>MT polynomials are

retained.
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In Fig. 11.1, we plot the root-mean-square error for |x|<1

averaged in time for 4<t<4.4 obtained using the Chebyshev
approximations to (11.1-2) when g(t) = -sin 57t . 1In this time
interval, u(x,t) is smooth for |[x|<l. Observe that the errors
decrease exponentially fast when N>3w. Also observe that when the
spectral approximations are relatively inaccurate (errors greater
than roughly 10%), Galerkin approximation is most accurate followed
by collocation and then tau. On the other hand, when the spectral
approximations are very accurate (errors less than roughly 0.5%),
tau approximation is most accurate followed by Galerkin and
collocation. This behévior seems typical. BAlso observe from

Fig. 11.1 that all three spectral approximations are nearly as
accurate as the best (rms) Chebyshev approximation; in fact, tau
approximation with N+1 polynomials is usually more accurate than
the best approximation with N polynomials. Here the best (rms)
Chebyshev approximation is thét Nth degree polynomial that

-l/de‘

1 2 2
minimizes {lluN - ul® (1-x9)
In Fig. 11.2, we make similar comparisons of the error in
spectral approximations using Legendre series for the problem
(10.1-2) with g(t) = -sin57t. Here too the errors decrease
exponentially fast when N25T. Again, tau approximation is more
accurate than Galerkin when both are very accurate, while it is
less accurate when both are relatively inaccurate. Also, tau
approximation with N+1 polynomials and Galerkin approximations
with N+2 polynomials are more accurate than the best Legendre
approximation with N polynomials. Here the best Legendre
approximation is that Nth degree polynomial that minimizes
1 2
£l lug - u|“ax.
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Fig. 11.1. A plot of the Ly-errors in Chebyshev-spectral
solution of (ll.1-2) with g(t) = -sin 57t. The errors

are averaged in time over the interval 4<t<4.4; the exact
solution u(x,t) = sin 57 (x+1-t) is smooth EThroughout this
time interval. The best (rms) approximation is given by
(3.41) with M = 5, a = 1-t truncated after T, (x). Observe

that the errors decreasé rapidly for N > Sﬂ.N
T
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Fig. 11.2. Same as Fig. 1l.1 except for Legendre-spectral
solution of (1l1l.1-2) with g(t) = ~sin 57t. Here the best
(rms) approximation is given by (3.45) with M = 5, a = 1-t
truncated after PN(x). . :
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In Fig. 11.3-4 we plot the error eN(X,t) in the best
Chebyshev polynomial approximation to sin 57(x+l-t) at t=4.
Observe that EN(x,t) is nearly an ‘'equal ripple' approximation
(Acton 1970) so uN(x,t) is nearly a mirimax approximation.

In Figs. 11.5-8 we plot the errors EN(X,t) versus X
at t=4 obtained by numerical solution of Chebyshev spectral
approximations to (11.1-2). As N increases, the tau method
" gives the closest approximation to an equal-ripple error, which
is consistent with the result shown in Fig. 11.1 that tau approximation
§Ives the smallest errors at high accuracy.

In Figs. 11.9-10, we élot the error in the best
Legendre polynomial approximation to sinS5n(x +1-t) at t=4.
Observe that eN(x,t) has large errors near the boundaries
x = %1, By comparing the results plotted in Figs. 11.3~4 with
those plotted in Figs. 11.9-10, we conclude that the best Chebyshev
polynomial approximation is closer to an equal ripple approximation
than is the best Legendre polynomial approximation. Even though the
best Legendre polynomial approximation to u(x,t) gives the smallest
mean-square error to u, the best Chebyshev polynomial approximation
usually gives a smaller value of the maximum pointwise (L ) error.
whh.e large errors of the best Legendre approximation are concentrated
near the boundaries x=%*1, while the Chebyshev weight function
(l-xz)“l/2 tends to distribute the errors in the best Chebyshev

approximation uniformly throughout -1<x<1.
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In Figs. 11.11-13, we pldt the errors eN(x,t) at t=4
obtained by numerical solution of Legendre spectral approximations
to (11.1-2). As for Chebyshev-spectral approximations, the error
in Legendre-tau approximation is smaller than that in Legendre-
Galerkin approximation.

One important feature of Legendre-spectral approximation is
that the spatial distribution of the error in tau and Galerkin
approximation plotted in Figs. 11.11-13 differs markedly from
the spatial distribution of the error in the best Legendre
polynomial approximations plotted in Figs. 11.9-10. The boundary
errors in the best L2 apéroximation are relatively large while
the boundary errors are relatively smaller in the spectral
approximations.

The boundary (endpoint) errors in Legendre-tau approximation
exhibit 'superconvergence' in the sense that they go to zero much

Legendre
faster than either theAL2 - errors or the L, and endpoint errors
of Chebyshev-tau approximation. This fact is illustrated in Fig.ll.1l4
where we plot the L, and endpoint errors of Legendre-tau and
Chebyshev-tau spectral approximations to the solution of (11.1-2)
with g(t) =-sin 57t . Here the endpoint error is luN(+l,t)—u(+l,tH
at the outflow boundary x= +1.

Several features of the results plotted in Fig. 11.14 deserve
comment. First, although the maximum error of the best N-term
Chebyshev polynomial approximation is smaller than the maximum
error of the best Legendre polynomial approximation to wu(x,t) by
roughly a factor 1/vN [see (3.4]) aéd (3. 45) 1, the maximum error

of the Legendre-tau approximation is smaller than the maximum error
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Fig. 11.14

A comparison of the Chebyshev-tau and Legendre-
tau L, and endpoint (x = +1) errors for the solution to (11.1-2)
with §(t) = -sin 57t.
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of the Chebyshev-tau approximation. Second, the endpoint errcr at
x=1 of the Legenare—téu approximation goes to zero like the square
of the endpoint error of the Chebyshev-tau approximation. This
remarkable behavior of endpoint errors in Legendre-~polynomial
approximations was found originally by Lanczos in a slightly
different context [Lanczos 1966 (p. 156), 1973].

A mathematical analysis of the errors of spectral approximations
to (11.1-2) has been given recently by Dubiner (1977). Dubiner's
results include: (a) asymptotic estimates of the errors incurred
by the various spectral methods, including error oscillations when
the solution is smooth; (b) a complete boundary layer description
of the decay of large errors due to discontinuities after the
discontinuities propagate out of the computational domain; (c)
analysis of the behavior of the tau-function <t(t) in (2.34). Dubiner
has analyzed a variety of spectral methods for (11.1-2) based on
expansions in general Jacobi polynomials. His ingenious analyses
of tau methods should permit more complete analysis of these

methods than possible using earlier a posteriori analysis (see Fox

& Parker 1968 for examples of a posteriori error analysis of tau

methods) .

Mesh Refinement

Sometimes it is useful to split up a domain, into several
subdomains and then use numerical methods of different spatial
resolution in each. For example, in limited-area numerical weather

forecasting near a metropolitan area, it may be desirable to have

much finer resolution in a small region than is practical globally.

One way to do this is to solve the problem separately on each
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of several subdomains and then to match the numerical solutions

so obtained across subdomain boundaries. As a model of this

Procedure we consider the problem

u + gx = 0 (-1l<x<l, t>0) {(1l.43a)

u(-1,t) = g(t), (11.4b)
= ' (11.5a)

Ve + V. =0 (L<x<3,t>0)

v(l+,t) = u(l-,t). (11.5b)

With finite difference methods, the accurate solution of the coupled
system (11.4.5) wusing different grids for -1<x<1 than for

1<x<3 may be troublesome. Inaccurate results or even numerical
instabilities can result from the matching (Browning; Kreiss & Oliger
13973) . Because grids with different grid separations have different

dispersion characteristics for waves propagating on the grid,

waves can reflect from the boundary at x=1 and cause large

errors.

Spectral methods are atccactive for the solution of mesh
refinement problems like (11.4-5) because they give small endpoint
errors. For example, the Chebyshev-tau approximation to (11.4-5) -
with N+1 polynomials to represent the solution for -1<x<1 and

M+l polynomials to represent the solution for 1<x<3 is given by

N

uy (x,8) = EO a (£) T (x)  (~1<xgl) (11.6)
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= - 11.7)
VM(X,t) = z b () Tm(x 2) (1<x<3) (
m=0
d N
Sn._ 2 3 pa (0<n<N-1) (11.8)
dt ®n p=n+l P
p+n odd
db M
_m__2 7 p b (0<m<M-1) (11,9)
dt mn p=m+1 P
p+modd
N n
} (=1)" a_ = g(t) (11.10)
n=0 n
$ s, .
- b = a (11.11)

It may easily be shown that if g(t) is smooth, the solution to
(11.6-11) converges to the solution of (11.4-5) throughout
-1<x<3 faster than any finite power 1/N or 1/M as N, M»wo,

The solutions for -1<x<l1 and 1l<x<3 match without the ‘
necessity of imposing any matching conditions in addition to (11.5b) or

(1111, Because no spurious downstream bouncary conditions
are applied at x=+1 on the wave propagating in the interval

-1l<x<1l, there are no reflected waves.
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One more example of a refined mesh spectral calculation

is instructive. Consider the heat equation problem

%2 =y d_u -1l<x<1 (11.12a)
t 2 XL

ox
v 82 . ‘
= 1<x<3 (11.12b)

ax

u(-1,t) = £(t), v(3,t)=g(t) (11.12c)
u(lst) = v( 1+,t), %% (1-,t)= %% (1+,t) (11.124)

where (11.124) follows by requiring continuity of temperature and
heat flux across the boundary at x=1. A Chebyshev-tau approximation

to (11.12) is given by (11.6-7) with
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N

da 2 2
?ﬁ§.= éL ¥ p(p~-n°) a, (0<n<N=-2) (11.13a)
n p=n+2
p+n even
db ¥ 2 2 |
B p£m+2 P (p-m*)b, (0<p<M-2) (11.13b)
m p+m odd
N n M
Zo (-1) a_ = £(t), ZO bm = g(t) (11.13c)
n= m=
N M N M '
S oa =3 -1™ , § nfa =- 7 (-1)%%_.
n=0 o m=0 M n=0 n m=0 m

(11.134)

It may be shown as in Example 7.1(v) that this approximation is

semi-bounded and hence stable and convergent.

Discontinuities

When t<2, the solution (11.3) to (11.1-2) 1is not
smooth at x=t-1; if g(t) = sinMmt, the solution has a

discontinuous derivative. This discontinuity seriously degrades

the rate of convergence of spectral approximations near the
discontinuity. Nevertheless, spectral approximations are still

normally much more accurate than finite-difference approximations

to the same problem. Orszag & Jayne (1974) give comparisons

between finite-difference and spectral approximations to
discontinuous solutions; in particular, they argue that if the

pth derivative of the solution is discontinuous, the rate of
convergence of Chebyshev-spectral approximations to (11.1-3) for
t<2 is of order 1/NP as N-«. Dubiner (1977) has given a detailed

asymptotic analysis of this problem. His results include detailed




behavior of the error for all x and t and are in good agreement
with numerical solutions.

One of the attractive features of spectral methods for problems
with discontinuities is that the region of large errors is more.
localized near the discontinuity than in finite-difference methods.
Thus, it shouid be possible to eliminate oscillations near the
discontinuity using less dissipation than is required when finite
difference methods are used. A comparison of the error in Chebyshev-
tau and second and fourth-order finite-difference solutions of (11.1-2)
for t<2 is given in Fia; 11.15;

Another interesting way to use spectral methods for problems
with discontinuous solutions has been suggested by Boris & Book
(1976) . The "optimal flux-corrected transport" approximation
gives good resolution of discontinuities without introduction of

unphysical numerical oscillations near the discontinuity. The idea

is to add in an artificial diffusion to smooth the discontinuity and

then to 'anti-diffuse' the resulting solution in such a way that no

new oscillations or maxima/minima are produced.

Comparison with Finite Difference Methods

Finite-difference approximations to (11.1-2) must be

formulated carefully near the boundaries x =% 1. For example,

the fourth-order semi-discrete approximation

auj . 8(uj+l—uj_l)-uj+2+uj_2 .
ot 120 x

-—

where uj(t) = u(jax,t), must be modified at x=-1+Ax, 1l-4x,1

because u(-1-Ax,t), u(l+Ax,t), u(l+2Ax,t) all lie outside the
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Computational domain =-1<x<1. Kreiss & Oliger (1973) discuss
methods to formulate difference approximations at these grid
points. However, it is not known how to formulate appropriate
'‘boundary’' conditions for arbitrary order difference schemes.
This difficulty is an artifact of difference methods; a fourth-
order difference quation requires 4'boundary' conditions while
only 1 condition (11.2) is properly imposed on the first-order
differential equation (11.1).

On the other hand, properly formulated'spectral methods
require no 'spurious' boundary conditions. 1Indeed, the imposition
of a spurious boundary condition on a spectral approximation to
(11.1), like du/9x = 0 at X =+1, will induce an unéonditional
instability (see Sects. 8,12). The mathematics of spectral
approximations follows closely the mathematics of the differential
equation being solved.

Spectral approximations also require considerably fewer degrees
of ffeedom to achieve accurate results than are required by
difference methods. A comparison for the problem (11.1-2) is
given in Table 11.l1 for late times at which the solution is smooth.

In Figs. 11.16-19 we show three-dimensional perspective plots
of the solution to a simple two-dimensional hyperbolic problem with

periodic boundary conditions -

S JAX,y,t) 3A(xX,v,t) A (x,y.t) _
5 y 3 + x oy 0 (11.14)
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Table 11.1

Second~order Fourth-order Chebyshev-tau §
N M g, N M €y N M € %
40 2 0.1 20 2 0.04 16 4 0.08
80 2 0.03 30 2 0.008 20 4 0.0012
160 2 £ 0.008 40 2 0.002 28 8 0.2

40 4 1. 40 4 0.07 32 8 0.008
80 4 0.2 80 4 0.005 42 12 .~ 0.2
160 4 0.06 160 4 0.0003 46 12 0.02

Table 11.1. L, (rms) errors for the solution of (11.1-2) with

g(t) = sinM7nt. The errors listed are measured at t=5 when the
solut;on (11.3) is smooth. Time differencing errors are negligible
and N is the number of grid points or Chebyshev polynomials.
Observe that to achieve a 1% error, the second-order method requires
N/M240, the fourth-order method regquires N/M>15, while the

Chebyshev~-tau method requires N/Mpr7.
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with

A(xt2m,yx2m,t) = A(X,y,t).

The solution to (11.14) is constant along the characteristics
x+iy= (xO + iyo)eit. Therefore, A(x,y,2r)= A(x,y,0) so

the solution should keep A wunchanged after a time 27. In

Fig. 11.16, we plot the initial conditions used for the calculation
whose results are plotted in Figs. 11.17-19. 1In Fig. 11.17 we plot
the results at t=27 of a second-order centered space difference
scheme; in-Fig. 11.18 we plot the results of a fourth—ordér scheme
and in Fig. 11.19 we plot the results of a spectral calculation
using the Fourier expansion

ikx+ipy

A(x,y,t) alk,p,t)e .

Tk%iK lp%iP
All three calculations used the same number of degrees of freedom

but thé differences in aécuracy are striking. The Fourier-spectral
method works well even though the convecting velocity (-y,x) in

(11.14) has jump discontinuities~at x=+27, y=*2r. The dominant

error in all three calculations originates from the 'corners' of the coune
in the initial A(x,y,0) distribution; this error appears as a large
lagging phase error in the finite difference solutions which explains
the 'wakes' of large errors following the remnants of A(x,y,2m).

Higher-Order Wave Equations

The mixed initial-boundary value

2 2
3_1,:, =28 (-lc<x<l,t>0) (11.15)
2 — ——
3t ox
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dimensional perspective plot of the A(x,y,t)

a second-order centered

field obtained after one revolution using

difference scheme on a 32 x 32 qgrid.

Fig. 11.17 Three-
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u(tl,t) =0 (11.16)

u(x,0) = £(x), 32 (x,0) = g(x) (11.17)
is well posed. Legendre polynomial solution of (11.15-17) is
semi-bounded and, hence stable (see Sec. 7). However, we have not
yet been able to prove that Chebyshev solution of this problem is

ever algebraically stable. The techniques of Sec. 8 prove that

if the boundary conditions (11.16) are replaced by the characteristic

boundary conditions

“ou(-1,t) _ du(-1,t) - 4 ou(l,t) 4 du(l,t) - 0
it I x ot dx

r

the scheme is algebraically stable. However, we have not yet

been able to prove this result for the boundary conditions (11.16).
reassuring to note that we have solved the Cheybshev-spectral
approximations to (11.15-17) and find no evidence of lack of
convergence. Indeed, the Chebyshev methods work just as well as
they do for (11.1-2). Thus, it is not the spectral methods that

run into difficulty on higher-order equations, but just our

methods of analysis.

It is

-




12, Advective-Diffusion Equation

In this section, we consider spectral methods for the

advective-diffusion ('linearized Burgers') equation

2

du(x,t) dulx,t) _ u _

—e— YU =V 2 + f£(x,t) (-1 < x< 1) (12.1)
u(-1,t) = 0, u(l,t) = 0 (12.2)
u(x,0) = g(x) . (12.3)

Eg. (12.1) is parabolic so boundary conditions should be applied

at both x = -1 and x = +1 . When v 1is small, the boundary
condition applied at x = +1 (assuming U > 0) has an interesting
effect on the stability of the spectral methods.

To beéin, we remark that the analyses of Sects. 7-8 can be
extended toAshOWAthat, as N + =, N-term Legendre énd Chebyshev
approximations to (12.1-3) are stable and convergent.

For eXample; Chebyshev;Galerkin approximation is stable

because (12.1-2) and <7.3)'imply that

1 2 1 2 1 2
d[ u I u - — 4 g
=r dx < |u] J ——75 dx v I 5 E75 X
dt j 4 7) | -1 (1-x%) 3/ -1 (1-x%)°/
l-x
/1-v/U u2
< |u j 3377 9X
~-Y1~v/U (1-x7)
2 1 2
< U J u ax (12.4)
-_ e ——
-1 /&-xz

so the approximation is semi-bounded.
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However, for finite N, there may be difficulty integrating
the resulting spectral equations. With Legendre polynomials,

*
Galerkin approximation LN to (12.1-3) satisfies LN + L. < 0

N =
so there is no difficulty with time integrations (although the
solution may not be accurate unless N is large enough.

on the other hand, Chebyshev-spectral solution of (12.1-3)
encounters the following curious behavior when v is small.
If Vv/U is small and N is not too large, the Chebyshev-spectral
approximations Ly to (12.1-3) have eigenvalues with positive
real parts. In Table 12.1, we list values of Ncrit for various

, L for Chebyshev-tau

values of v/U; for N < Nc N

rit
approximation to (12.1-3) has eigenvalues with positive real
parts. Since these eigenvalues may have moderately large real
parts [they can be as large as U2/2v by (12.4)]1, there may
be rapid growth of errors and numerical solution of the
Chebyshev-spectral equations may appear unstable and divergent.

For N > N , there are no eigenvalues of L, Wwith positive

crit
real parts so the spectral equations are stable.

The origin of this temporal instability is the outflow
boundary layer at x = 1 ; when U > 0, the solution to
(12.1-3) develops a region of fapid change of width roughly

v/U near x = +1 as t increases. Since roughly 3(U/\))l/2

Chebyshev polynomials are required to resolve a boundary layer

of width v/U [see (3.50)], we expect that Nerit =3 3(U/\))l/2
1) vNirit/U:% 9 . In fact, as shown in Table 12.1, the

2
crit

of exp(-Ut3d/3x) 1is roughly Nl/4‘ (see Sec. 8), we expect

criterion is actually VN /U = 4. [Since the Chebyshev norm

that the proper scaling of N is better represented as

7/4 . .
crit/Y ¥ 1-3. As shown in Table 12.1, this modified scaling is

crit
VN

more nearly satisfied for the range of v considered.]
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TABLE 12.1

v/U Ncrit \)chzr;i.t/U “NZ£§t/U
1.0 x 1072 15 2.25 1.14
2.5 x 1073 35 3.06 1.26
1.0 x 1073 61 3.72 1.33
6.0 x 104 81 3.94 1.31
4.0 x 1074 101 4.08 1.29
Table 12.1 Critical values NCrit of the number of Chebyshev

polynomials necessary that the tau approximation to the operator
-U3u/9x + vazu/ax2 with u($l) = 0 have no eigenvalue with

positive real parts. Also listed are the inverse 'grid Reynolds

2 7/4 /0.

|}
number vNcrit crit

/U and the parameter VN
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If Chebyshev-spectral approximations to (12.1-3) are
solved using fractional time-step methods, the temporal

instability for N < N appears 1in a unique way. Define

crit
the operator AN as an N-mode Chebyshev approximation to the
operator -U%u/3x with the boundary condition u(-=1l) = 0

and the operator BN as an N-mode Chebyshev approximation

td the operator vazu/ax2 with u(*xl) = 0. Then the
evolutibn operator of (12.1-2) is exp[(AN+BN)t] so a

fractional step method involves the splitting

8uN/at = BluN/at + BzuN/at where
aluN/Bt = ANuN ’ azuN/at = BNuN .

For any values of v and U > 0, the fractional step

- . . 3 1/4
3;u,/3t is algebraically stable since |[lexp Agt|l = 0(N7"7)
(see Sec. 8), while the fractional step azuN/at is stable
since |lexp Byt|| < 1  (see Sec. 7). Nevertheless,
lexp[ (A *B ) t]|| can grow rapidly with t. The reason is
that AN and BN- do not commute so it is not true that
llexpL(AB 1] < flexp Agt]] [lexp Byt|l .
The Lie formula (5.8) does ensure that

llexp (2B ) t1]] < 1lim ]Iexp(ANt/n)]ln Ilexp(BNt/n!In_

n-—+o
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. 2
However, as N+ o with n/N»e ,

llexp(agt/n) || - 1 ~ ox’t/n

with ¢ > 0 (see Table 8.1l) so

Hexp(ANt/n)Hx1 " exp(CNZt) >> 1 (N-+oo ; n/N2+‘m )

Therefore the Lie formula gives only the very weak upper bound
C g2
Hexp[(AN+BN)t]J| < expicNTt) .

In summary, Chebyshev-spectral approximations to (12.1-3)
give fractional step methods such that each fractional step
is algebraically stable while the total step is unstable

unless N > N .
crit

If the boundary conditions (12.2) are replaced by

ut-1,8) = 0o, 22 (+1,8) = o0 (12.4)
when U > 0, the criterion for temporal stability is relaxed
significantly. As shown in Table 12.2, the value of vNirit/U

is decreased to roughly 1.6. However, the growing modes that

< .
appear when N Ncrlt

when the boundary condition u(+1,t) = 0 is applied, so

are much tamer than those that appear

accurate time integrations are still practicable when

vNZ/U v 0.01 (see Haidvogel 1977).
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TABLE 12.2

7/4
v/u Ncrit \)Ncrit/U
2.5 x 1073 21 0.52
-3
1.0 x 10 37 0.56
6.0 x 10”2 49 0.54
-4
4.0 x 10 61 0.53
-4
2.0 x 10 89 0.52
Table 12.2. Critical values Ncrit of the number of

Chebyshev polynomials necessary that the tau approxima-
tion to the operator -U3u/9x + vazu/axz_ with
u(-1) = 0, gu(+l)/3x = 0 and U > 0 have no

eigenvalues with positive real parts. The parameter

7/4

vNcrit

/U is also listed.
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13. Models of Incompressible Fluid Dynamics

The Stokes equations for low Reynolds number, two-

dimensional incompressible flow are

v 2
—%- = - Vp + vv

>
v =0 ,

@

v, (13.1)

<N @

where Vv is the velocity field, p is the pressure, and v is
the kinematic viscosity. With the boundary conditions that
v =0 on rigid stationary boundaries, the pfoblem (13.1) is
well posed for any v > 0. An equivalent formulation is given
by the vorticity-streamfunction equations

"~ 3
9

I
li

vV2c ’

(13.2)

LA g

= v,
obtained by taking the curl of the Stokes equations (13.1). Here
Yy is the streamfunction defined by ¥V = (-3y/3y,dy/9x) and ¢

is the vorticity.

A one-dimensional model of (13.2) is

2 .
3L =y 2L (c1<x<1,t>0), (13.3)
ot 2 =*=z
9x
A ‘
r = ¥ L1 <x <15, (13.4)
, ox2 - -

On stationary rigid walls, the boundary conditions for (13.3-4) are
Yx,£) =y (x,£) =0 (x = 21). . (13.5)

There is one subtlety in the application of spectral methods
to (13.3-5) that does not appear directly when the primitive
equations (13.1) are used. It is necessary to use some care
to avoid unconditional numerical instability with the Chebyshev-

tau method.
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The most obvious way to use the tau method to solve

(13.3-5) is to substitute (13.4) into (13.3) and solve

Vot = Vpyyex (L Sx <1, t>0) (13.6)

by expanding y(x,t) in the Chebyshev series
N
Yix,e) = ] a (8)T (x) . (13.7)
n=0
Denoting by aéq) the Chebyshev expansion coefficients of qu/axq

(see A.23), the tau equations for (13.5-6) are

da(z)
n (4)
3t vV oa, (0 <n< N-4, £>0), (13.8)
N n N n_2
(zl)"a_ = (1) " n"a_ = 0. (13.9)
n
n=0 n=0 n

Unfortunately, this method for solution of (13.3-5) is
unconditionally unstable as N - », In Table 13.1, we list

the lzrgest positive eigenvalue xmax of (13.8~9); there is

a solution of (13.8-9) that grows like an(t) = an(O)exp(kmaxt)-

Since Xmax grows like N4 as N > », errors also grow rapidly
as N + o for fixed t. This method is unusable for time-

dependent calculations.

In Table 13.1, we also list the values of kn for n =1,5,

where the eigenvalues of (13.8-9) are ordered according to

*

Ayl < Ix] 2 ... . The exact eigenvalues of (13.3-5) are

found by seeking solutions of these equations of the form

P(x,t) = p(x)exp(At), z(x,t) = z(x)exp(At). It may be easily
verified that the exact eigenvalues of (13.3-5) are given by

A= -uz with y = nm or u any nonzero solution of the transcendental

equation tan y = u. The exact values of Al and XS are also listed
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Table 13.1

N Al AS Amax

10 -9.8696598 -189.63800 4,272,
15 -9.8696044 - 89.54550 29,439.
20 -9.8696044 - 88.86244 111,226,
25 -9.8696044 - 88.86244 294,697.
30 -9.8696044 - 88.86244 : 652,722.
35 -9.8696044 - 88.86244 1,255,298,
40 -9.8696044 - 88.86244 2,215,880,
Exact -9.8696044 - 88.86244

Table 13.1. Eigenvalues of the tau approximation (13.8-9)
to (13.6-7). The N-4 eigenvalues are ordered so that

D I b O ]AN_4|.A11 the eigenvalues are real.

The largest positive glgenvalue Amax = AN_4:
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in Table 13.1. Evidently, even though (13.8-9) is unstable as
N + «, it does a good job of reproducing the low-n modes;
approximately /Ilnl Chebyshev polynomials are required to
resolve the mode with eigenvalue An' Thus, this version

of the tau method may be useful for eigenvalue calculations
even.though it is unconditionally unstable for the initial-
value problem (13.3-5) (as evidenced by the spurious unstable

modes with eigenvalues as large as Amax)'

The tau ﬁethod behaves similarly when applied to more
difficult problems, like the Orr-Sommerfeld equation for
linear stability analysis of incompressible plane-parallel
shear flows. Low modes are given accurately by the analog
of (13.8-9) (see Orszag 1971d), but there appear spurious
unstable modes with large growth rates. Similar spurious
unstable modes appear in finite-~difference solution of the

Orr-Sommerfeld equation (see Gary & Helgason 1970).

There is a simple method to avoid the spurious unstable
modes encountered by (13.8-9). The technique to be described
below also eliminates the spurious unstable modes encountered
in solution of the Orr-Sommerfeld equation. The idea is
simply not to combine (13.3-4) into (13.6). Rather, we

expand z(x,t) as in

N R
Z(x,t) = nzobn(t)Tn(x) (13.10)
and solve
db :
== =v1p!? 0 <n <¥-2), (13.11)
b, o= a'? (0 <n <n-2), (13.12)

in addition to (13.9). Here we have dropped two equations
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from the Chebyshev modal equations that result from (13.3-4).
The logic of this modification of the tau method is as follows.
Application of (13.8) for 0 < n < N-4 is equivalent to
application of (13.12) for 0 < n < N together with (13.11) for

0 < n < N-4. On physical grounds, we may expect that this
procedure will lead to instability because the boundary conditions
Y = 0 at x = 1 should be imposed on (13.4) not (13.3), while
the boundary conditions by, = 0 at x = 21 should be imposed on
(13.3) only when v > 0. On the other hand, when the system

is truncated as in (13.11-12), each of the dynamical equations
can play their proper role in adjusting the boundary conditions:
the boundary conditions ¢y = 0 are imposed on (13.12) while

the boundary conditions wx = 0 are imposed on (13.11).

We shall now prove that (13.11-12) is stable for the
special case in which N is even with qont+1 = b2n+l = 0 for
all n, t > 0. In this case, y(x,t) and z(x,t) are even functions

of x. To begin , we observe that (13.11) is equivalent to

%%-: VI%E% + bé?N(x) (-1l <x <1, t>0) ,
while (13.12) is eguivalent to
azw
z(x,t) = ;;7 3 bNTN(x) .
Therefore,
A3 4

Since Y is an even function of x, it follows by integration with
respect to x that

2 3

3 v 3 '
Y ;;§ + tNTN . (13.13)
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Also, since yY(x,t) is a polynomial of degree N that satisfies

¢x(il,t) = 0, integration by parts gives

1 , ) 1
[ ou T -xh) Tax = - [ [y

2 2. -k 3
-1 o hxx + xwx/(l—x )]TN(l_x Y dx = 0

since wxx and xwx/(l-xz) are polynomials of degree N-2 so they rmust .

be orthogonal to TN(x). Therefore, taking the Chebyshev inner

product of (13.13) and wx(x,t), we obtain

1 1
3 2 1 42y , 2, =%
T f_l 2 (1-x%) TPax = 2v f_lwx¢xxx(1—x ) dax < 0, (13.14)

where the last inequality is established using the inequality
derived in Example 7.1 (v):
1

uu (l-xz)-%dx < 0
1 XX =

if u(x) is a polynomial of degree N satisfying u(zl) = 0. The

J

energy bound (13.14) proves stability of the tau approximation

(13.11-12).

Finally, let us discuss methods for the solution of
the primitive equations (13.1) using Chebyshev tau approximations.
A one-dimensional model that embodies the essential features
of (13.1) is obtained by solving (13.1) within the slab -1 < x < 1,

-» <y <®, with an assumed solution of the form -~

v = (u(x,t)eiky, v(x,t)eiky), p = p(x,t)eiky B
for some real wavenumber k. Let the Chebyshev expansion

coefficients of u(x,t), vi(x,t), p(x,t) be denoted as un(t),

vo(t), p () (0 < n < N), respectively. Then an unconditionally
stable, implicit fractional step method for the solution of (13.1)
with a forcing term (f(x,t)eiky,g(x,t)eiky) added to the right side is
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T = u_(t) + At[—pr(ll)

n n —_
x‘}n = v, (£) + at[-ikp_ + g (£)] (0 < n < N), (13.16)
= (1) ‘1S =

u + 1kvn = 0 (0 <n < N), (13.17)
N N _

F . o= 7 1" =o0 (0 <n < N), (13.18)
n=0 © n=0 n

(2) = = -

un(t+At) - \)Atun (t+At) u, (0 <n < N-2), (13.19)
v (t+at) - vatv'® (erat) =5 (0 < n < N-2),  (13.20)
N n N n

Y (#1)7u_(t+At) = J  (£1) v_(t+At) = 0.
n=0 n n=0 n

Here we use the notation that, for example, uéz) represents
the Chebyshev coefficients of uxx(x,t). The scheme (13.15-21)
is based on backwards Euler time differencing; it is straight-
forward to generalize (13.15-21) to other more accurate time
differenéing methods.

The fractional step (13.15-18) involves computation
of ?he pressure field by imposition of the incompressibility
condition (13.17). Only the boundary conditions u(xl,t) = 0
are applied because this part of the time step is effectively
inviscid so only the normal flow can be specified at the
boundary. Thus, we drop (13.15) for n = N-1,N in favor of
the two boundary conditions (13.18). The fractional step
(13.19-21) involves the viscous term in (13.1) so boundary
conditions are applied on both the normal velocity component
u and the tangential velocity component v. Accordingly, the
tau method involves dropping (13.19-20) for n = N-1,N in favor

of these boundary conditions.
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The system (13.15-21) is solved as follows. Muléiplying
(13.15) by ik and subtracting the result from the Chebyshev

x-derivative of (13.16) gives

5.0 -k = v e - ike_0) + aefe. P o) - kg (6)]

(0 <n < N-2).

Substituting ;n = iﬁn(l)/k from (13.17) gives

(g

N = uéz)(t)—kzun(t) + At[—ikgél)(t) - k%2_(1)]

(0 <n <N-2). (13.22)

Eq. (13.22) with the boundary conditions (13.18) is of the
same form as (13.19~20) with boundary conditions (13.21).
These equations are best solved by the algorithm discussed
at the end of Sec. 10.

The stability analysis of (13.15-21) is as follows.
The evolution of a perturbation is governed by (13.15-21)
with fn =g, = 0 for all n. Therefore, the solution of (13.22)
is Gn = un(t) for all n. Also, ;n = vn(t) for all n. Finally,
the'imélicit scheme (13.19-21) is an unconditionally stable
scheme for solution of the heat equation. This proves that
(13.15-21) is unconditionally stable.

Implicit, unconditionally stable methods for solution of
(13.1) that do not use fractional steps [as in (13.15-21)]

can also be implemented. In a fully implicit scheme, we would

solve

u (t+8t) = u_(£) + ael-p_ Pava ) (pra) 4 (eran) )

(0<n<N-2) , (13.23)
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vn(t+At) = vn(t)+At[-ikpn+vvn(2) (t+At)+gn(t+At)]

(0<n<N-2)) (13.24)
1) (t4at)+ikv (E+AE) = 0  (0<n<N) (13.25)
n n —_—— >
N n N |
L o(£1) u_ (t+Ae) = §  (:1)Pv_(t+bt) = 0. (13.26)
n=0 n n=0 n

Substituting (13.25) into (13.24) and eliminating P, between

(13.23 - 24), we obtain

u(2) 2

(2) 2 _
u, (t+At) --k un(t+At) = u (t) -k un(t)

.(l) 2

satlva_ 4 (erae) —uokPa_ (2 (erae) -ikg k%]
+b +b,(-1) (0<n<N-2), (13.27)
I DM (that) = § (1) %n’u_(trat) = 0, (13.28)

Here b; and b2 are parameters determined by the condition that

(13.27-28) have a solution.
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There are two features of the full implicit scheme (13.23-28)
that should be mentioned in comparison with the fractional step
scheme (13.15-22). First, the solution of (13.27-28) involves
gsolution of an essentially pentadiagonal matrix equation in
contrast to (13.22) which is essentially tridiagonal. This
may be a serious difficulty because the pentadiagonal system
(13.27) is not as well conditioned as the tridiagonal system
(13.22).

Second, the full implicit scheme avoids an ambiguity of
the Navier-Stokes equations pointed out by Orszag & Israeli
(1974, p. 299). When the boundary conditions V=0 are
applied to (13.1) (with a force term included), we obtain

Vp = vy + % (13.29)

on the boundaries. Therefore, we can obtain boundary conditions
on both dp/3n and P, where n is normal to the boundary.

However, the divergence of (13.1) gives

vp = V-F, (13.30)

so p 1is the solution of the Poisson equation (13.30) satisfying
both the Dirichlet and Neumann boundary conditions (13.29).

It seems at first that p is overspecified. 1In fact, p 1is not
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overspecified; the above argument reflects only the adjustment
that Vv must undergo near the boundary in order to make both
sets of boundary conditions on p mutually consistent.

This adjustment process is directly accounted for in the
system (13.23-28) but is only indirectly accounted for in the
fractional step method (13.15-22). Only the boundary condition
(13.18) is applied while determining the pressure in (13.15-17).
Nevertheless, it seems that the fractional step method adjusts
itself from time step to time step so no serious errors are

produced by neglecting the tangential components of (13.29).

The methods discussed in this section extend to give
stable methods for solution of the nonlinear Navier-Stokes eguations.
For example, if the forcing term (f,g) in (13.15-16) is chosen
to be the nonlinear terms of the Navier-Stokes equations, our
analysis shows that stability of (13.15-21) is determined by stability

restrictions on the nonlinear terms alone.
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14, Miscellaneous Appnlications of Spectral Methods

In this Section, we survey some special topics regarding
spectral methods. Some of these topics are still under active

investigation, so th=z results reported here are very incomplete.

Complicated Geometries

There are two swvays that spectral methods can be used
to solve problems in complicated geometries without introducing
basis fuﬁctions that are special to the geometry and, therefore,
unwieldy and inefficient to use. The two methods are mapping.
and patching.

Mapping involves transforming the complicated domain
into a simpler one by means of a coordinate transformation.
Spectral methods are then applied in the simple geometry
using the techniques discussed in earlier sections. For

example, if we wish to solve the heat equation

| -3%2- u(X,Y,t) = Vzu(XrYrt) (14.1)

in the two-dimensional domain

-1 <x<1, =-f(x) <y < £(x)
for some given function f(x) with the boundary conditicors
that u = 0 on the boundary of the domain, we would proceed

as follows. First, we make the coordinate transformation

z = y/f(x) (-1 <z < 1) (14.2)
and rewrite (14.1) as
2
) 3 il 2,2 -2 93
3T u(x,z,t) = (§§ - Fz EE) u(x,z,t) + £ ;;7 u(x,z,t)
(-1 <x <1, -1 <2z<1) . (14.3)
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Then, we expand u(x,z,t) in a double Chebyshev series and
integrate (14.3). For this purpose, a hybrid numerical scheme
is recommended. Unconditionally stable time differencing can
be obtained by a semi-implicit method (see Sec. 10). Here a simple
diffusion operator is added and subtracted’from (14.3). The
simple diffusion operator is then evaluated implicitly using tau
method (because the tau method is simplest when no complicated
nonlinearities or nonconstant coefficient terms are involved);:
the remaining nonconstant coefficient term in (14.3) is thenevaluated
explicitly using fast Fourier transforms and the collocation
method. The result is an efficient and accurate method for
solution of (14.1).

Techniques like those just described have been applied
to a variety of problems with much success. If a convenient
coordinate transformation is available, the mapping technique
combined with appropriate spectral methods may be expected
to be very useful.

The idea of patching is that if the geometry is the
union of several simpler geometries (like an L-shaped region)
then spectral approximations can be formulated in each of the simpler
domains. These solutions are then patched across the boundaries by
requiring that the solution (and an appropriate number of
derivatives) be smooth. When this technique is applied
together with the mapping technique discussed above, it is
possible to devise spectral shock-fitting methods for the
solution of compressible flow problems. Patching methods require
much further investigation to judge their usefulness in practical

prcblems.
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Poisson's Equation in Two and Higher Dimensions

The Chebyshev tau equations for Poisson's equation

V®u = f in the square -1<x<1, -1<y<l are

2(2,0) L L(0,2) _ ¢

nm nm nm (02nsN-2,0<m<M-2), (14.4)

while the Dirichlet boundary conditions u = 0 are

N
n
néo(tl) U = 0 (0<m<M) (1475)
N m
mgo(il) u =0 (0<n<N) . (14.6)
Here we expand u(x,y) and f(x,y) in the double Chebyshev series
N M u '
tat = 1 I {en
{ = £} T (x)T_(y) (14.7)
f(x,y) n=0 m=0 nm n m

and we denote the Chebyshev expansion coefficients of Bp+qu/3xp8yq

by u(P 'q)

nm . The ON+2M+4 boundary conditions are not all linearly

independent; there exist four linear relations among them, namely
N M

n m _
n£0 méo(il) (x1) Um = 0. (14.8)

Thus, (l14.4-6) gives (N+1) (M+1l) equations for the (N+1) (M+1)

unknowns unm (iniﬁ, 0§m§M).

Using (10.33 [or (A.23)], the system (14.4-6) can be reduced
to a block tridiagonal matrix equation modified by extra full
rows corresponding to the boundary conditions (14.5-6). These
equations can be solved by standard block tridiagonal algorithms
in order N3M or order NM3 operations. If Poisson’s equation must
be solved several times with the same values of N and M but different

functions f(x,y), it is more efficient to apply alternative methods.
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A method to solve (14.4-6) in order NZM operations (with
a preprocessing stage that requires order N3 operations) is

as follows. First, we find the N-2 eigenvalues lo and eigen-

-

vectors enp (p = 0,...,N-2) of the equations
(2) _ -
enp = Apenp (0 £ n < N-2)
N n
£1 = 0.
ngo( ) enp

The eigenvalues Xp are all negative ’‘as proved in Example 7.3(ii) .

Then we form the (N+1)x(N+1l) matrix E whose elements are

Epp = €pp (0 52 SN, 0 <p £N-2)
Banc1 = Sa0 © R IM

- < <
En,N én,l (0 <n <N)

and compute the inverse matrix D = E_l. Since the boundary

conditions (14.5) are satisfied by u it follows that

ml
NEZ
u = e__v (14.9)
nm p=0 np pm
for suitable vpm for all n,m. Therefore, setting
N
Som = n=zoA (D) oo (0SP<N-2, 0<m<M-2), (14.10)
it follows that (l14.4-6) become
' (0,2) — <y SN - <m <M-—
-Apvpm + vpm = gpm (0<p<N-2, 0<m<M-2) (14.11)
M n -
22 (£1)v__ = 0 (0<p<N-2). (14.12)
m=0 pm - |

Egs. (14.11-12) may be solved efficiently (in order NM operations)

for vpm using the algorithm discussed at the end of Sec. 10.

Once v is found, u

pm may be reconstructed from (14.9). The

nm

total operation count is order N2M [from the two matrix multiplies
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(14.9-10)].
The solution of Poisson's equation by the Chebyshev
series method outlined above is very competitive with finite-
difference solution using fast Poisson solvers. Z2Zang &
Haidvogel (1977) present a number of comparisons of the Chebyshev

methods and fast Poisson solvers.

There are two further complications that may arise in
elliptic boundary-value problems. First, the elliptic equation
may have nonconstant coefficients or may even be nonlinear.
Here we recommend that spectral equations be solved using
relaxation methods of the kind advocated by Concus & Golub (1973),
in which the heart of the algorithm is the fast, efficient
solution of Poisson-like equations. Second, the geometry
may be more complicated than a box. In this case, we recommend
the implementation of capacitance matrix techniques (or
equiva;ent Green's function techniques) in which the problem
to be solved is imbedded in a simpler geometry, like a box
(see Buzbee et al 1971). Again, the heart of the algorithm

is the fast solution of Poisson's equation using (14.9-12).

Coordinate Singularities

When spectral methods are applied to problems in - -
cylindrical or spherical geometries, their formualtion may
require special care at the coordinate singularities. These
'pole problems' have been extensively investigated (Orszag 1974,
Tang 1977). As a simple example of these effects, let us
consider the computation of the eigenvalues of Bessel's equation

using the Chebyshev tau method (Metcalfe 1974). The problem is
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to find the eigenvalues and eigenfunctions y(x) of

2
1 n
" - | e = -
y"t Y 2 Ay (14.13)
subject to the conditions that y(l) = 0 and that y(x) be finite

for 0 < x < 1. The exact eigenvalues are -related to the zeros of the

Bessel function Jn: A= j2 )=0, p=1,2,... .

o np where Jn(]n

P

When n is even, the eigenfunctions of (14.13) are even
functions of x; when n is odd, the eigenfunctions are odd.
This fact suggests that we represent the solution to (14.13)
in terms of series of even Chebyshev polynomials when n is even

and odd polynomials when n is odd. Thus, for n odd we write

M
y(x) = mgl YnTop1 %) - _ (14.14)

In Table 14.1, we list numerical values for the smallest eigenvalue
of (14.135 with n = 7 using the series (14.14), the boundary
condition y (1) = 0, and the Chebyshev tau method. The convergence
of ?his method, while very impressive as M increases, is slowed
by the coordinate singularity of (14.13) at x = 0. 1In general,
series of the form (14.14) behave like x as x - 0. In this
case the terms y'/x and y/x2 are singular at x = 0. The true
eigenfunctions J7(j7px) behave like x7 as x * 0, as may easily
be shown using Frobenius' method, so none of the terms of (14.13)
are in fact singular for the exact eigenfunctions.

It is possible to improve the convergence of (14.14) by
imposing additional 'pole conditions', like y'(0) = 0. When
y'(0) = 0 in the series (14.14), the terms of (14.13) are
individually nonsingular. 1In Table 14.1, we also list numerical
values of the smallest eigenvalue of (14.13) with n = 7 and

the two boundary conditions y(l) = 0, y'(0) = 0 applied. There
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Table 14.1

M Ay with y(1)=0 A with y(1)=y'(0)=0

10 124.001290649

14 169.111983340 122.895944051

18 126.557832251 122.907620295

22 122.991799598 122.907600279

26 122.908250800 122.,907600204

Exact 122.907600204 122.907600204
Table 14.1. Smallest eigenvalue of (14.13) with n 7

obtained using (l14.14) and the Chebyshev tau method.
M. is the number of Chebyshev polynomials.

boundary condition y'(0) = 0 is a pole constraint at

the singular point x = 0 of (14.13).
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is clearly a dramatic imprcovement in the rate of convergence.

It is also possible to make the problem less sensitive to

pole properties near the origin by first multiplying (14.13)

by x2 to eliminate explicitly singular terms and then applying
the tau method. The results of the latter trick are essentially
the same as applying the pole condition y'(0) = 0 directly to
(14.13).

If pole conditions are not properly applied, it is possible
to degrade significantly the accuracy of séectral computations.
It is even possible to induce strong instabilities that are
absent when proper pole conditions are applied. These matters
are discussed in detail by Orszag (1974) and Tang(1977).

Energy Conservation

It was shown in Sec. 2 (see footnote on p.29) that if
(u,A(u)) = 0 so the‘solution to the nonlinear equation
du/3t = A(u) conserves energy [5(ua,u)/3t = 0], then the
solution to any spectral approximation obtained by a self-adjoint
projection operator also conserves energy. Some examples of this
result are energy conservation by Galerkin approximations to
the inviscid Navier-Stokes equations [(9.55) withv= 0] using
Fourier series with periodic or free-slip boundary conditions
and Legendre polynomial series with rigid no-slip boundary
conditions.

If the inviscid Navier-Stokes equations are rewritten in

so-called rotational form as
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3_\)7 +> > 2>
3t = v Xe-=VI+wW v , (14.15)
> > > . s 1l 2 .
where w=Vxv is the vorticity and = p+3 Vv is the
pressure head, then energy conservation holds when Vv = 0 for

certain collocation approximations. If the collocation points

are ;i and Qi = 3(§i), then (14.15) gives

3 2 > > '
T I vi=- ) vy VI, (14.16)
i i

when v = 0. If the collocation projection operator is such

that integration by parts is valid in the sense that

- > >
) Viivni = - 7 HiV°vi + boundary terms, (14.17)
i i

then V.V = 0 and the boundary conditions imply that energy
conservation holds. Thus, Fourier collocation approximation
conserves energy when periodic or free-slip boundary conditions

are applied to (14.15) [see Fox & Orszag 1973].
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15. Survey of Spectral Methods and Applications

In this Section, we give a brief survey of spectral
methods and some of their recent applications. There are
five important features of spectral methods that should be

considered in their formulation and application. They are:

(i) Rate of convergence —~ If the solution to a problem

is infinitely differentiable, then a properly designed

spectral method has the property that errors go to zero

faster than any finite power of the number of retained modes.

In contrast, finite-difference and finite~element methods

y;eld finite-order rates of convergence. The important
consequence is that spectral methods can achieve high accuracy
with little more resolution than is required to achieve moderate
accuracy.

(ii) Efficiency - The development of fast transform

methods permits spectral methods to be implemented with
comparable efficiency to that of finite difference methods
with the same number of independent degrees of freedom.
However, since spectral methods typically require a factor
of 2-5 fewer degrees of freedom in each space direction to
achieve moderate accuracy (say, 5% error), the spectral
computations can be considerably more effective. As the
required accuracy increases, the attractiveness of spectral
methods increases.

(iii) Boundaryv conditions - As shown in earlier Sections

of this monograph, the mathematical features of spectral

methods follow very closely those of the partial differential
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equation being solved. Thus, the boundary conditions imposed
on spectral approximations are normally the same as those
imposed on the differential equation. In contrast, finite-
difference methods of higher order than the differential egquation
require additional 'boundary conditions.' Many of the
complications of finite-order finite-difference methods disappear
with the infinite~order-accurate spectral methods.

Another aspect of the treatment of boundary conditions
by spectral methods is their high resolution of boundary
1ayérs. If the solution to a problem has a boundary layer
of thickness ¢ , then only about l/sl5 polynomiéls [see (3.50)] need
be retained to achieve high accuracy. In contrast, finite-
difference methods using equally spaced grid points would require
about l/é grid points to resolve such a boundary layer solution.
Moreover, if a coordinate transformation is employed to improve
the resolution of a boundary or internal layer of thickness € ,
the errors of spectral methods are decreased faster than any
finite power of € as € =+ 0.

(iv) Discontinuities - Surprisingly, spectral methods

do a better job of localizing errors than difference schemes

and hence require considerably less local dissipation to smooth

discontinuities.

(v) Bootstrap estimation of accuracy - It is often

possible to estimate the accuracy of spectral computations
by examination of the shape of the spectrum. Thus, in computations
of three-dimensional incompressible flows at high Reynolds numbers,

the mean-square vorticity spectrum must not increase abruptly at
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large wavenumbers (small scales); if the vorticity spectrum
decreases smoothly to 0 as wavenumber increases, it is safe
to infer that the calculation is accurate. On the other hand,
similar criteria for finite-differencg methods can be very
misleading.
Let us now survey some applications of spectral methods
to incompressible fluid dynamics. We shall classify the method

according to the boundary conditions and geometry.

(i) Periodic boundary conditions in Cartesian coordinates -

Here Fourier series are appropriate. Spectral methods have
been regularly used in three dimensions with 32 x 32 x 32
modes and in two dimensions with 128 x 128 modes to simulate
homogeneous turbulence. Most operational codes now use
pseudospectral (collocation) methods because aliasing errors
are usually small. The key fast transform methods are described
in detail by Orszag (1971lc).

More recently, more ambitious spectral codes have been
developed. The KILOBOX code employs 1024 x 1024 Fourier modes
in two dimensions while the CﬁNTICUBE code uses up to
128 x 128 x 128 modes in three dimensions. These high resolution
codes are now being used to study fundamental questions
regarding high Reynolds number turbulence, including the structure
of inertial ranges.

(ii) Rigid boundary conditions in Cartesian . coordinates - Here

Chebyshev or Legendre polynomialé should be employed. Typical
applications to date include numerical studies of turbulent

shear flows and boundary layer transition. Pseudospectral(collocaticn)
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convenient because fast Fourier transform methods can be
applied.

(iii) Rigid boundary conditions in cylindrical geometry - Here

Chebyshev or Legendre polynomials should be used in radius, Fourier
series in angle, and either Fourier or Chebyshev series in

the axial direction (depending on boundary conditions). Some
technical aspects of the implementation of Chebyshev series

in radiu;, including pole conditions,are discussed by Orszag
(1974). Applications to date include studies of transition

in circular Couette flow and pipe Poiseuille flow. in particular,
it should be emphasized that Chebyshev polynomial expansions

are much better suited for serious numerical work than the
apparently more natural choice of Bessel function expansions

in radius. There are two reasons: Chebyshev series converge
faster to general functions regardless of their boundary
conditions and Chebyshev-spectral methods can be implemented
efficiently by fast transform methods.

(iv) Problems in spherical geometry - Here surface

harmonic expansions, generalized Fourier series, and 'associated'
Chebyshev expansions all have attractive features. A

detailed discussion of these methods is outside the scope of
this monograph, but roughly speaking generalized Fourier series
permit the most efficient transform methods to be developed
followed by associated Chebyshev expansions and then surface
harmonic expansions but surface harmonic expansions are best
with regard to the pole problem. A variety of applications

of these methods to global atmospheric flows have been made.

(v) Semi-infinite or infinite geometry - Here Chebyshev
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expansions are best if the domain can be mapped or truncated

to a finite domain without serious error. There are two cases
here: additional boundary conditions may or may not be

required at 'infinity.' Here again the formulation of spectral
methods follows closely the exact mathematics. If additional
boundary conditions, like radiation or outflow boundary conditions,
must be imposed on the truncated domain, then they should

also be applied to the spectral method. On the other hand,

if mapping without additional boundary conditions does not
introduce a singularity in the exact equations, no boundary

conditions at 'infinity' are required in the spectral approximation.

-1€2-



Sec.

Sec.

Sec.

Sec.

Sec.

Sec.

Sec.

Sec.

Sec.

Sec.

Sec.

Sec.

Sec.

Sec.

REFERENCES

1: Courant & Hilbert (1953), Jeffreys & Jeffreys (1966),
Kantorovich & Krylov (1964).

2: Collatz (1960), Fox & Parker (1968), Kantorovich &
Krylov (1964), Lanczos (1956), Orszag (197la,b,c,1972),
Richtmyer & Morton (1967), Strang & Fix (1973).

3: Acton (1970), Courant & Hilbert (1953), Erdelyi et

al (1953), Fox & Parker (1968), Isaacson & Keller (1966),
Lanczos (1956), Orszag & Israeli (1974), Rivliin (1969},
Szego (1959), Zygmund (1935).

4: Godunov & Ryabenkii (1963), Kreiss (1962), Kreiss &
Oliger (1973), Laptev (1975), Miller & Strang (1965),

Richtmyer & Morton (1967).

5: Barnett & Storey (1974), Bartels & Stewart (1972),
Chorin et al (1977), Lie & Engel (1888), Strang (1960),
Richtmyer & Morton (1967). ,

6: Fornberg (1975), Kreiss & Oliger (1973), Lanczos (1956,
1966), Lyness (1974), Orszag (1971c¢,1972), Swartz & Wendroff
(1969), Wengle & Seinfeld (1977).

7: Price & Varga (1970), Richtmyer & Morton (13967),
Swartz & Wendroff (1969).

9: Gazdag (1976), Gottlieb & Gustaffson (1976), Kwizak
& Robert (1971), Mesinger & Arakawa (1976), Richtmyer
& Morton (1967), Roache (1972), Widlund (1966).

10: Cooley & Tukey (1965), Cooley (1967), Metcalfe (1974),
Orszag (1970, 1971c, 1974), Orszag & Israeli (1974),
Patterson & Orszag (1971).

11: Boris & Book (1976), Browning et al (1973), Dubiner
(1977), Lanczos (1966.,1973), Orszag (1971a) , Orszag &
Israeli (1974), Orszag & Jayne (1974).

12: Haidvogel (1977), Roache (1972).

13: Deville & Orszag (1977), Gary & Helgason (1970), Orszag
(1971b,d4,1976a), Orszag & Israeli (1974).

14: Buzbee et al (1971), Concus & Golub (1973),Fox & Orszag

(1973), Metcalfe (1974), Orszag (1974), Orszag & Israeli
(1974), Tang (1977., Zang & Haidvogel (1977).

15: Armstrong et al (1970), Bourke (1972), Boyd (l97?a,b),
Collins & Dennis (1973), Deville & Orszag (1977), Eliasen
et al (1970), Fox & Orszag (1973), Francis (1972), ngdag
(1975), Grosch & Orszag (1977), Herbert (1976), Herring

et al (1974), Hoskins (1973), Israeli & Orszag (1976),
Machenauer (1972), Merilees (1¢73), Merilees & Orszag (1977),
Munson & Joseph (1971), Murdock (1977), Orszag (1970, 1974,
1976a,b,1977), Orszag & Israeli (1974), Orszag & Pao (1974),

Orszag & Patterson (1972), Schamel & Elséis
& Orszag (1977). ! : sasser (1976), Tang

-170-




BIBLIOGRAPHY

Acton, F. S. 1970 Numerical Methods That Work, Harper & Row,
New York.

Armstrong, T. P., Harding, R. C., Knorr, G. & Montogmery, D. 1970
Solution of Vlasov's Equation by Transform Methods,

Methods in Computational Physics, Vol, 9, Academic, New York,
pP. 29

Barnett, S. & Storey, C. 1974 ' Matrix Methods in Stability Theory,
Barnes & Noble, New York.

Bartels, R. & Stewart, G. 1972 Solution of the Matrix Equatidn
AX + XB = C, Comm. Assoc. Comp. Mach. 15, 820.

Bourke, W., 1972 An Efficient, Oné-Level, Primitive~Equation Spectral
Model, Mon. Wea. Rev. 100, 683-689.

vaae

Boris, J. P. & Book, D. L. 1976 Flux-Corrected Transport. III-
Minimal Error FCT Algorithms, J. Comp. Phys. ag, 397.

Boyd, J. P. 1977a Pseudospectral Methods for Eigenva}ue and
Nonseparable Boundary Value Problems, to be published.

Boyd, J. P. 1977b The Choice of Spectral Functions on a Sphere:
A Comparison of Chebyshev, Fourier and Associated Legendre
Expansions, to be published.

Browning, G., Kreiss, H.O. & Oliger J. 1973 Mesh Refinement,
Math. Comp. 27, 29.

Buzbee, B. L., Dorr, F. W., George, J. A.& Golub, G. E.'l97l
The Direct Solution of the Discrete Poisson Equation on
Irregular Regions, SIAM J. Num. Anal. %, 722.

Chorin, A. J., Hughes, T. J. R., McCracken, M. F. & Marsden, J: E.
1977 Procduct Forrulas and Numerical Algorithms, to be published.

Collatz, L. 1960 The Numerical Treatment of Differential Egquations,
Springer-Verlag, Berlin. ‘

Collins, W. M. & Dennis, S.C. R. 1973 Flow Past an Impulsively
Started Circular Cylinder, J. Fluid Mech. QO, 105.

Concus P. & Golub, G. H. 1973 Use of Fast Direct Methods for the

Efficient Numerical Solution of Nonseparable Elliptic Equations,
SIAM J. Num. Anal. kg, 1103.

Cooley, J. W. 1967 Applications of the Fast Fourier Transform
Method, Proc. IBM Scientific Computing Symposium on Digital
Simulation of Continuous Systems, IBM Corp., p. 83.

Cooley, J. W. & Tukey, J. W. 1965 An Algorithm for the Machine
Computation of Complex Fourier Series, Math. Comp. {?, 297.

-171-~



Courant, R. & Hilbert, D. 1953 Methods of Mathematical Physics,
Vol. 1, Interscience, New York.

Deville, M. & Orszag, S. A. 1977 To be published.

Dubiner, M. 1977 To be published.

Eliasen, E., Machenauer, B. & Rasmussen, E. 1970 On a Numerical
Method for Integration of the Hydrodynamical Equations with
a Spectral Representation of the Horizontal Fields. Department
of Meterology, Copenhagen University, Denmark, Rep. No. 2,
35 pp. .

Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F.G. 1953
Higher Transcendental Functions, vol. 2, McGraw-Hill, New York.

Fox, D. G. & Orszag, $. A. 1973 Pseudospectral Approximation to
Two-Dimensional Turbulence, J. Comp. Phys. 11, 612.
v\

Fox, L. & Parker, I. B. 1968 Chebyshev Polynomials in Numerical
Analysis, Oxford University Press, London.

Fornberg, B. 1975 On & Fourier Method for the Integration of
Hyperbolic Equations, SIAM J. Num. Anal. 12, 509.

Francis, P. E. 1972 The Possible Use of Laguerre Polynomials for
Representing the . Vertical Structure of Numerical Models of
the Atmosphere, Quart. J. Roy. Met. Soc. 98, 662.

Gary, J. & Helgason, R. 1970 A Matrix Method for Ordinary Differential
Equations, J. Comp. Phys. 5, 169.

Gazdag, J. 1975 Numerical Solution of the Vlasov Equation with
the Accurate Space Difference Method, J. Comp. Phys. y?, 77.

Gazdag, J. 1976 Time-Differencing Schemes and Transform Methods,
J. Comp. Phys. 20, 196.

Godunov, S. K. & Ryabenkii, V. S. 1963 Special Criteria of Stability
of Boundary-Value Problems for Non-Self-Adjoint Difference
Equations, Uspekhi Mat. Nauk %, 211.

Gottlieb, D. & Gustaffson, B. 1976 Generalized DuFort-Frankel
Methods for Parabolic Initial-Boundary Value Problems, SIAM
J. Num. Anal. 13, 129.

Grosch, C. E. & Orszag, S. A. 1977 Numerical Solution of Problems
in Unbounded Regions: Coordinate Transforms, J. Comp. Phys.,
to appear. .

Haidvogel, D. 1977 Resolution of Downstream Boundary Layers in the
Chebyshev Approximation to Viscous Flow Problems, to be published.

Herbert, T. H. 1976 Periodic Secondary Solutions in a Plane Channel,

Proc. Fifth Int'l Conf. on Numerical Methods in Fluid Dynamics (ed. bv

A.I. van de Vooren and P.J. Zandbergen)Springer-Verlag,Berlin, p.235.°
Herring, J. R., Orszag, S. A., Kardman, R. H. & Fox, D. G. 1974

Decay of Two-Dimensional Homogeneous Isotrope Turbulence,

J. Fluid Mech. 66, 417.

=172~




Hoskins, B. J. Comments on "The Possible Use of Laguerre Polynomials
for Representing the Vertical Structure of Numerical Models
of the Atmosphere, Quart. J. Roy. Met. Soc. 99, 571.

Isaacson, E. & Keller, H. B. 1966 Analysis of Numerical Methods,
Wiley, New York.

Israeli,M. & Orszag,S. A. 1976 Numerical Investigation of Viscous
Effects on Trapped Oscillations in a Rotating Fluid, Proc. Fifth Int'l

Conf. on Numerical Methods in Fluid Dynamics(ed. by A.I. van de Vooren
and P.J. Zandbergen) Springer-Verlag, Berlin, p.241.

Jeffreys, H. & Jeffreys, B. S. 1966 Methods of Mathematical Physics,
Cambridge University Press, Cambridge.

Kantorovich, L. V. & Krylov, V. I. 1964 Approximate Methods of Higher
Analysis, Noordhoff, Groningen.

Kreiss, H. O. 1962 Uber die Stabilitatsdefinition fur Differenzen-
gleichungen die partielle Differentialgleichungen approximieren,
Nordisk Tidskr. Informations-Behandling 2, 153.

Kreiss, H. O. & Oliger, J. 1973 Methods for the Approximate Solution
of Time Dependent Problems, World Meteorological Organization/
International Council of Scientific Unions.

Kwizak, M. & Robert,.A. J. 1971 A Semi-Implicit Scheme for Grid
Point Atmospheric Models of the Primitive Eguations, Mon. Weather
Rev. 99, 32.

— 1202t

Lanczos, C. 1956 Applied Analysis, Prentice-Hall, Englewood Cliffs,

New Jersey.

Lanczos, C. 1966 Discourse on Fourier Series, Hafner, New York.

Lanczos , C. 1973 Legendre versus Chevyshev Polynomials, Topics in
Numerical Analysis (ed. by J.J. MillerAcademic,N.Y., p- 191.

Laptev,G. 1975 Conditions for the Uniform Well-Posedness of the
iéuchy Problem for Systems of Equations, Soviet Math. Dokl.
6, 65.

Lie, S. & Engel F. 1888 Theorie der Transformationsgruopen, Leipzig.

Lyness, J. 1974 Computational Techniques Based on the Lanczos
Representation, Math. Comp. 28, 81.

Machenauer, B. & Rasmussen, E. 1972 On the Integration of the Spectral
Hydrodynamical Equations by a Transform Method, Dept. of Meteorology,
Copenhagen University, Denmark, Rep. No. 3, 44 pp.

Merilees,P.E.1973Pseudo-Spectral Approximation Applied to the Shallow
Water Equations on a Sphere, Atmosphere 11, 13.

Merilees, P. E. & Orszag, S. A. 1977 To be published.

Mesinger & Arakawa, A. 1976 Numerical Methods Used in Atmosvheric
Modelg, Vol. 1, World Meteorological Organization/International
Council of Scientific Unions.

-173-




Metcalfe R. W. 1974 Spectral Methods for Boundary Value Problems in
Fluid Mechanics, Ph. D. Thesis, M.I.T., Cambridge, Mass.

Miller, J. J. H. & Strang, W. G. 1965 Matrix Theorems for Partial
Differential and Difference Equations, Stanford University Tech.
Report CS28, Stanford, California.

Munson, B. R., & D. D. Joseph 1971 Viscous Incompressible Flow
Between Concentric Rotating Spheres, Part 1, Basic Flow, J. Fluid
Mech.,49 , 289,

Murdock, J. W. 1977 A Numerical Study of Nonlinear Effects on Boundary
Layer Stability, AIAA Paper 77-127.

Orszag, S. A. 1970 Transform Method for the Calculation of Vector-
Coupled Sums: Application to the Spectral Form of the Vorticity
Equation, J. Atmos. Sci. 27, 890. -

Orszag, S. A. 197la Numerical Simulation of Incompressible Flows within
Simple Boundaries: Accuracy, J. Fluid Mech. 49, 75.

Orszag, S. A. 1971b Galerkin Approximations to Flows with Slabs,
Spheres, and Cylinders, Phys. Rev. Letters 26, 1100 (1971) .

Orszag, S. A. 197lc Numerical Simulation of Incompressible Flows
within Simple Boundaries: Galerkin (Spectral) Representations,
Stud. in Appl. Math. 50, 395.

Orszag, S. A. 19714 Accurate Solution of the Orr-Sommerfeld Equation,
J. Fluid Mech. 50, 689.

Orszag, S. A. 1972 Comparison of Pseudospectral and Spectral - -
Approximation, Stud. in Appl. Math. 51, 233.

Orszag, S. A. 1974 Fourier Series on Spheres, Mon. Weather Rev.
102, 56.
L aavav

Orszag, S. A. 1976a Turbulence and Transition: A Progress Report,
Proc. Fifth Int'l Conf. on Numerical Methods in Fluid Dynamics
(ed. by A.I. van de Vooren and P. J. Zandbergen), Springer-Verlag,
Berlin, p.32.

Orszag, S. A. 1976b Design of Large Hydrodynamics Codes, Computer
Science and Scientific Computing (ed. by J. Ortega), Academic,
New York, p. 191.

Orszag, S. A. 1977 Numerical Simulation of Turbulent Flows, Handbook
of Turbulence, Plenum, New York, p. 281.

Orszag, S. A. & Israeli, M. 1974 Numerical Simulation of Viscous
Incompressible Flows, Ann. Rev. Fluid Mech. 5, 281l.

Orszag, S. A. & Jayne, L. W. 1974 Local Errors of Approximate
Solutions to Hyperbolic Problems, J. Comp. Phys. 14, 93.

-174~




Orszag, S.A. & Pao, Y.H. 1974 Numerical Computation of Turbulent
Shear_Flows, Advances in Geophysics, Vol. 18A (ed. by F.N.
Frenkiel and R.E. Munn), Academic, New York, p. 225,

Orszag, S.A. & Patterson, G.S. 1972 Numerical Simulation of Three-

g;megzional Homogeneous Isotropic Turbulence, Phys. Rev. Letters
r -
S

Patterson, G.S. & Orszag, S.A. 1971 Spectral Calculations of Isotropic

Turpulence: Efficient Removal of Aliasing Interactions, Phys.
Fluids 14, 2538.
T v

Price, H. S. & Varga, R. S. 1970 Error Bounds for Semidiscrete
Galerkin Approximations of Parabolic Problems with Applications
to Petroleum Reservoir Mechanics, Numerical Solution of Field

Problems in Continuum Physics, American Mathematical Society,
Providence, p.74.

Richtmyer, R. D. & Morton, K. W. 1967 Difference Methods for Initial
Value Problems, Interscience, New York.

Rivlin, T. J. 1969 An Introduction to the Approximation of Functions,
Blaisdell, Waltham, Mass.

Roache, P. J. 1972 Computational Fluid Dynamics, Hermosa Publishers,
Albuquerque, N. M.

Schamel, H. & Elsasser, K. 1976 The Application of the Spectral Method
to Nonlinear Wave Propagation, J. Comp. Phys. 22, 501.

Strang, W. G. 1960 Difference Methods for Mixed Boundary-Value Problems,
Duke Math. J. 27, 221.

.
~

Strang, G. & Fix, G. J. 1973 An Analysis of the Finite Element Method,
Prentice-Hall, Englewood Cliffs, New Jersey.

Swartz, B. K. & Wendroff, B. 1969 Generalized Finite Difference
Schemes, "Math. Comp. 23, 37.° o
! b

SzegS, G. 1959 Orthogonal Polynomials, American Mathematical Society,
New York. ’

Tang(Hui), C. M. 1977 Numerical Simulation of Fluid Flow in Spherical
and Two-Dimensional Magnetohydrodyvnamic Turbulence, Ph.D. Thesis,
M. I. T., Cambridge, Mass.

Tang, C. M. & Orszag, S. A. 1977 Two~Dimensional Turbulence on the
Surface of a Sphere, to be published.

Wengle, H. & Seinfeld, J. 1977 Pseudo-Spectral Solution of Atmospheric
Diffusion Problems, J. Comp. Phys., to appear.

Widlund,0. 1966 Stability of Parabolic Difference Schemes in the
Maximum Norm, Numer. Math. 8, 186. .

Zang, T. & Haidvogel, D. 1977 To be published.

Zygmund, A. 1935, Trizonometrical Series, Dover, New York.

-175-




Appendix. Properties of Chebyshev Polynomial Expansions

The Chebyshev polynomial of degree n, Tn(x), is defined

by
Tn(cose) = cosn?iH. (A.1)
Th T (x) -1, T, (x) = To(x) = 2x°-1, T.(x) = 4x°-3x
us, o (x , 1 = x, 5 (x) = 2x ' 3 = '

T4(x) = 8x4-8x+l, and so on. The Chebyshev polynomials are the

solutions of the differential equation
A=x? 2 NP ———+nT=0 (A.2)

that are bounded at x = 1. They satisfy the orthogonality relation

1
_L2y-1/2 _ T s
flT (x) T_(x) (1-x%) dx = ¢ ° ., (A.3)
where Cy = 2, S 1l for n>0. Some properties of Chebyshev
polynomials are
Toep (X)) = 2x Tn(x) - T (%), | (A.4)
|T, (x)]<1, i'rl;(x)linz, (A.5)
aP p-1 -
= T 1) = DR n o (m?ek®) sk, (A.6)
dx k=0
aP L
|25 T ) |= 0(n®P) (n+» p fixed,l|x|<1), (A.7)
T (x1) = (+1)7 , T (0) = (-1)%, T, _.(0) =0, (A.8)
n ' "2n 2n+1 ! :
t =
(0) ’ T£n+l(0) = (-—l)nn.
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The following formulae relate the expansion coefficients

an in the series

o«

£(x) = ] a T (x) (|x]<1)
n=0

to the expansion coefficients bn of

o«

Lf(x) = ] b T (x) (]x|<1)
n=0

for various linear operators L. We use the constants ¢
n

and dn defined by

cg= 2 ¢, =0 (m0), c_=1 (n0),
d, =1 (n20), d =0 (n<0).

Some formulae are:

@

LE=f'"(x): cb_=2 7} pa (A.9)
nn p=n+1l P

p+nodd

Lf = £f"(x): ¢ b_ = E p(pz-nz)a {pr.10)
: c b L B .
p=n+2
p+n even
= L a fa )
Lf = xf(x): b, = 5(C 12,1+l (A.11)
Lf = 2f( J: b = 1 {c ,a +(c_+c Ya_+a }
=X x)3 n 4 n-2 n-2 n n-1""n n+2 (A.12)
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—_— -z ») o — _l_ ﬂ2
LE = x"2(x) b. T 16 {Cn-dan—4+(cn—§\h-2+2c —Z)an—i
{A.13)
2 i)
+(c -2 :cn—l C;_'rvn TC da F{c +c +c +c )
tna"Tn 'Tn-l n+l Tn+2’ 9T g
_ E(x)-£(0) © p-n-l
Lf = =2/ " -\V) -
X cb =2 T (-1) 2, (A.14)
n n
p=n+1l p
p+n odd
£(0)=£' (0 s Beg=t
Lg = BRI L 0 ve b =2 ] (pon)(-1) 2a (a.ls)
X p=n+2 p
. p+n even
= E'xX)-f'(0) . c b = 4 N pa .16)
Lf x ) nn p=n+2 P (A
p-n=2 mod 4
l (o2
£'(x)-£'(0)-F"(0) x
Lf = . cb =207 (p-n+1
2 n°n pente3 FoAThPa, A1)
P-nz3 mod 4
=) i
- Z (p-n-1)pa
p=nt5 i
P-nzl mod 4
Lf = xf'(x) b ="na + 2 pa
c b ='na p£n+2 o (A.18)
p+n even
1
Lf = P50 (), b = 5{(n-l)an_l+(n+1)(l+dn.l+cn_1>an+1 (A.19)

=]

+ 4 2 Pap}
p=n+3
p+n odd
~-178-
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[N

Lf = x£"(x) : c b_ =
n p=n+3
prnodd .

@

2o (o - 2 2
LEf = x“£"(x): cpby = n(n-l)a_+ 7 p(p -n -2)ap

p=n+2
p+neven
Lf:f_(}-zz-
1-x
. —_f) o — “
with £(x1)=0 : cnbn = -2 ) (p-n)a
p=n+2 P
p+neven

Also, if we expand f(q)(x) as in

q 0
d (q)
S—f(x) = § a_'¥ 1 (x)

q n ’
dx n=0 n

then
(a) _ (@) _ (g-1)
°n-1%n-1 qn+1 = 2na, )
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a(n+l)a 4 + Y p(p-n -1)ap

(A.20)

(A.21)

(a.22)

(A.23)



Properties of Legendre Polynomial Expansions

The Legendre polynomial of degree n, Pn(x), is

defined as the solution of the differential equation

a 2 dPn(x)
a‘ (l—x ) ——d—x——- + n(n+l) Pn(X) = 0 (A.24)
that satisfies Pn(l) = 1. Thus, Po(x) =1, pl(x) = x,

Pz(x) = % (3x2 - 1), and so on. The Legendre polynomials satisfy

the orthogonality relation

1 2

!1 Pn(x) Pm(x) dx = o T snm’ (A.25)

Some properties of Legendre polynomials are

(%) (A.26)

(n + 1) Pn+l(x) = (2n + l)XPn(X) - nPn_l
p (:1) = (D)7, BI(x1) = (x1) 71 Sn(n+1) (A.27)
P (x)|< 1, [P)(x)|< %r1(n+l) (]x]<1). (A.28)
1/2
_ 2 . 1 ™ -3/2
Pn(COS 8) = [miTB] sin{ (n+ -2—)8+ 21—] + 0(n )

[n+=; 6#6, mra fixed] (A.29)
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If f(x) is expanded in the Legendre series
<«
f(x) = Z a Pn(x)

then

1
_ 2
an = 2—n+—l -j:l f(X) Pn(X) dx.

If L 1is a linear operator and

Lf(x) =n£0bn Pn(x)

then the relation between bn and an is as follows:

LE(x) - £'(x): b = (2n+1) ) a (A.30)
p=n+1 P
p+n odd

LE(x) = £"(x):  b_ = (n+d) ) [p(p+1)-n(n+l) Ja_ (A.31)
P=n+2 P
p+n even

_ . _ n n+l
Lf(X) = Xf(X) : bn = Tn-1 an_l + 2—n+—§ an+l. (A.32)
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